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Abstract. The control of more than 20 degrees of freedom in
real-time is one challenge of humanoid robotics. The control ar-
chitecture of an autonomous humanoid robot often consists of
two parts, namely a real-time part that has direct access to the
motors or RC servos, and a non-real-time part, that controls
the higher-level behaviors and sensory information processing
such as vision and touch. As a result motion patterns are devel-
oped separately from the other parts of the robots behavior. In
research, particularly when including developmental processes,
it is often necessary that the design or the evolution of motion
patterns is integrated in the overall development of the robot’s
behavior. This is indeed one of the main principles of the em-
bodied intelligence paradigm. The main aim of this work is to
define a flexible way of describing motion patterns that can be
passed to the motion controller which in turn executes them in
real-time. As a result, the Harmonic Motion Description Proto-
col (HMDP) is presented. It allows the motions to be described
as vectors of coefficients of harmonic motion splines. The mo-
tion splines are expressed as human-readable ASCII strings
that can be passed as a motion stream. Flexibility is achieved
by implementing the principle of superposition of several mo-
tion patterns. In this way also closed loop control is achievable
in principle. Moreover, the HMDP can be implemented into
the (deleted for blind review) project of the 3D soccer simula-
tion league as a standard way to communicate motion patterns
between the agent and the simulation interface and/or real hu-
manoid robots.

1 Introduction

Many developers of autonomous robot systems experience difficulties when de-
signing a control system that is at the same time capable of high level sensor
processing, in particular vision sensors, and motor control. The solution is in
most cases a hybrid design using 2 CPUs, one for motor control and one for sen-
sor processing. The sensor data processing is often done by a PC like system with



a broadband multitasking operating system (Windows, Linux) that usually does
not have real-time capabilities. The motor control is done by a micro-controller
that performs predefined motion patterns. The demanded motion pattern is com-
municated between both CPUs in some way, e.g., by serial bus. In particular in
humanoid robots the motion control part has to be a real-time system in order
to avoid jerky motions.

During the development process of the robot’s behavior usually problems
arise from this hybrid design. Whereas a PC-like system is always accessible,
ready for changes, the motor controller can only be accessed via specialized edi-
tors and development tools, debuggers etc. Changes of motor controller programs
can only be realized by flashing the limited memory that is available on the con-
troller board. The programming of the motor-controller is mostly in done in C by
using many custom definitions that depend on the design features of the motor
controller which vary in dependence of the product line and the manufacturer.
Moreover, the real-time behavior is managed by a series of interrupts that are
again dependent on the type of the controller.

The problems usually result in a development process in which the motion
patterns are developed separately from the design of the overall behavior. This
seems acceptable in robot systems that do not require a big set of motions and
do not have many degrees of freedom.

In humanoid robots, however, this design principle is not really satisfying.
This is particularly true for soccer playing humanoid robots. Whereas humans
have an infinite number of motion patterns available, the typical motion number
of patterns of robots that participate a the RoboCup is normally less then 10,
e.g. strong kick, soft kick, walking, turn, several goal keeper behaviors. A first
step would be to allow for the activation of several motion patterns at the same
time. This can be used for looking for the ball and walking forward independently
in parallel. Furthermore, it can be used to balance out perturbations from the
walking process. Thus, in addition to the normal walking process a weak pattern
can be added that can stabilize the motion pattern. For this purpose it is neces-
sary that the exact phase relation between both motion patterns is controllable.
This is one requirement for the protocol.

Splines and harmonic functions have been used in various projects in different
fields so far. Greszczuk and Terzopoulos [1] describe learning of muscle-actuated
locomotion through control abstraction in order to generate realistic animations
for computer graphics applications. They employ artificial animals with many
degrees of freedom and abstract learned controller functions using Fourier anal-
ysis. These compact controller representations are then synthesized in learning
of higher-level behaviors which benefits from the dimensionality reduced form of
these controllers.

Another example from the field of computer graphics is given in [2]. Here,
Fourier expansions of experimental data of actual human behaviors are taken
as a basis to interpolate and extrapolate locomotion for an animated human
figure. The authors describe how rich variations of human locomotion can be
achieved by superposition of different Fourier expansions. Furthermore, the ab-
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Fig. 1. Possible implementation of HMDP in a robot environment: Higher level behav-
iors are processed in a Linux micro PC (e.g. Geode). The PC sends motion patterns
over the serial bus to micro controller. They are executed in real time.

straction of the movements allows different parameters of the animation (like
e.g. step-length, speed, or hip position) to be controlled interactively to tweak
the resulting animation.

In robotics, we find application of splines e.g. for trajectory generation of
mobile robots (see [3] for the case of controlling an all-wheel steering robot).
The idea of control abstraction for a more compact representation of movements
is realized with different methods, for instance Fourier analysis for cyclic motion
patterns as in [4] or using hierarchical nonlinear principal component analysis
to generate high-dimensional motions from low-dimensional input [5].

In the following section we outline the requirement specifications that follow
from the above mentioned motivations. We then outlined the principle of su-
perposition of motion, its advantages and potential problems in section 3. The
syntax of the HMDP as implemented in our software is described in section 4.
To illustrate the work with the protocol, we provide an example using an exper-
imental graphical user interface in section 5. Finally, we present a possible role
of the HMDP in the 3D2Real project [6], and close with a discussion.

2 HMDP requirement specifications

To define the specifications of the HMDP more precisely:

— The HMDP includes messages that are submitted from the PC to the micro-
controller and response messages from the micro-controller to the PC.

— The protocol allows for the PC side to set the current time as an integer
and also to set the maximal time value after which the current time on the
micro-controller is set to zero again.

— The protocol defines motion patterns in terms of splines. In order to allow
for periodic motion patterns that can be repeated an arbitrary number of
times the set of base functions is defined as a set of sines and cosines.
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Fig. 2. Motion superposition: By using HMDP two or more motions can be superposed
by defining the amplitudes Y; and the phase shift ¢;. The resulting motion pattern is
the sum of both initial patterns.

— The protocol activates motion patterns including the information at what
time the motion pattern is activated, and its amplitude. It also defines which
step of the motion pattern is assigned to what time step of the motion
controller (motion phase assignment).

— The design of the HMDP includes the management of the motion patterns
on the micro-controller side. It is possible to activate several motion patterns
at the same time. The resulting motion pattern is the superposition of all
activated motion patterns (motion superposition principle).

— The protocol allows to read out values of sensors that are connected to the
micro-controller. In particular, it allows to read out the the angle of the servo
positions at a particular time step. The message for a sensor request consists
of a the information of the time at which the sensor value should be read
out and the name of the particular sensor. As soon as the time for read out
is reached the time value the sensor name and the sensor value is sent from
the micro-controller to the PC.

3 Harmonic motion splines and motion superposition
principle

In this section we outline the principle with which motion patterns can be ex-
pressed in terms of motion splines; how they can be superimposed and under
which circumstances the superposition of motions is useful.



In the following we discuss the harmonic motion splines for a robot with
A actuators. Currently a mere position control is considered. We have spline
functions that describe motion patterns f, ,(f). These are expressed in terms of
discrete finite series of sine and cosine functions:

fpa(t) =co+

Z Cont1,a 8I0(P X Wy p X t) + Cant2,6 COS(P X wppx), (1)
0<n<mazx
where p = 57, 0 < p < P is the index of the pattern and 0 < a < A the
index of the actuator. The set wave numbers wy, , is specified when the pattern
is initialized. As a convention of the current HMDP for a specific pattern p it is
identical for all actuators a.
The vector £,(¢) = {f1,p--- fa,p} expresses then the state vector of the robot,
i.e., the positions of all servos, given only the pattern p is active with an ampli-
tude of 1. The final position that is sent to the servo is then:

F(t) =) Ry(Of,(t — ¢p) (2)

p<P

Where the amplitude R,(¢) and the offset ¢, are transmitted when the pattern
is activated. Before the onset or change of the amplitude of a motion pattern the

value ¢p, Ynew,p; Tstarto;Tstart1 have to be transmitted, R, (t) is then determined
by

t < TstartO : Rp(t) = Yold,p
te [TstaTtO; Tstartl] : Rp(t) = (Ynew,p - Yold,p)/(Tstartl - TstartO) Xt (3)
t > Tgiartt : Rp(t) = Ynew,p

In other words the amplitude is changed in a linear way from the previous value
to the current value. However, the value of ¢, changes at the time Ts;qrt0-
The design makes several types of messages necessary:

— Pattern initialization message: This message determines the ID of the
pattern p. It also sends information about the used wave numbers w,, ,, for
all n.

— Coefficient transmission: Since this can be a large set of information and
since the buffer of of the receiving device is limited it seems useful to separate
this type of message from the first message. So in this second type of message
all coefficients ¢; , with 0 <7 <2n+1 and 0 < a < A have to be submitted
in “digestible” message sizes.

— Use Pattern messages: For using the patterns the on set times Tstqrt0
and Tstqre1 as well as the the new amplitude Y., and ¢, have to be used.

— Sensor reading commands: Those commands should contain a time value
that specify for the motion controller at what phase of the motion the sensor
value i.e. that potentiometer value of the joint should be read.



— Time managing commands: The time management has to be covered, in
some way. The higher level controller should roughly know the current time
value of the motor controller. The overflow of the time counter needs to be
managed. The increment of the time counter should be changeable.

In the current approach the structures that manage the patterns are organized
in a static manner. Also dynamic ways to storage the patterns seem possible.

The total motion of the control output according to equation 2 is the su-
perposition of all active motion patterns in their current amplitude. The virtues
of this superposition might not be directly obvious in the general case. In the
following we go into three different examples where the superposition of motion
patterns is useful.

First, examples for periodic movements: Independent movements concern non
overlapping sets of actuators and are applied by simply running both patterns at
the same time. With respect to humanoid robotics this can be done by looking for
the ball — that is: moving the head and walking at the same time. Both patterns
can have different wave numbers and can be applied completely independent
from each other. Here it is necessary that both movements do not interfere with
each other, e.g., that the limbs collide under certain circumstances. In addition
it is only possible to have one pattern with dynamic effects on the whole body
of the robot active at any time. In the case of walking and looking, only the
walking would have an effect on the dynamic of the whole body of the robot.
This kind of combination is only possible if both movements concern completely
non overlapping sets of joints and one movement pattern leaves the joint that
concerns the other movement in a default position.

The second example would be two movements at the same frequency. Where
the first movement is the default behavior and second movement is a response of
the control to some perturbation. As an example, take vibrations during walking;
these can be damped by adding a regulatory movement on top of the standard
movement.

The third example would be parametric non-periodic movements, like kick-
ing. Here, the kicking direction can be superposed to a standard kicking behavior.

Limitations of the HMDP approach are closed loop control tasks that require
inevitably control reactions below the limit of the reaction time of the combined
system motor controller higher behavior controller.

4 HMDP Syntax

In the following we describe the set of messages and the way parameters and
numbers are defined.

4.1 Characters used in HMDP syntax

It is a subset of the ASCII characters. At the current stage the HMDP uses:
numbers ([0..9,a..f]), capital letters ([A..Z]) and the symbols *, <, >, 4+,-, @ ||
and &. Carriage return (decimal code 10,13) defines the end of a command line,
after which the line is parsed in the processor.



4.2 Check sum feature

All commands can be sent in a check sum mode. The check sum is calculated
as: A= (3, X;) modulo 16, where A is itself expressed as a hex-value([0-9,a-f]).

4.3 Long command feature

In some microprocessors command lines over 10 digits may become unsafe since
the hardware serial-bus chips provide only a buffer of around 10 characters.
Therefore it seems useful to break long messages down into shorter parts that
are written into the program buffer. An & character at the end indicates that
the current command line is continued after the carriage return. In combination
with the check sum feature messages up to a defined length limit can be sent
safely.

4.4 At-time execute command feature

With this feature a command - usually a command to read out sensor values -
is executed at a specified time. In the current implementation the slave assumes
that the at-time commands are sent in sequence, i.e., the command that should
be executed first is sent first etc. The slave does not sort the commands and
would wait until the time for the next command in its batch is reached and then
look for the start time of the following at-time command. Thus, if one sends
an at-time command for time 100 and then an at-time command for time 50,
both commands are executed at 100 and 101, respectively. If the time counter
is already behind the time given in the at-time command (like in the previous
example) the command is executed in the next time cycle.

4.5 Types of numbers

Numbers are transmitted as hex numbers that include the numbers [0..9] and
the letters [A..E]. Currently, three types of numbers are used: integers, rational
numbers, and real values.

— Integers are transmitted as conventional hex numbers.

— Rational numbers are used to express wave numbers. Since most motor-
controllers can only emulate floating arithmetic by software, rationals seem
to be faster than real values. They are expressed by a set of two subsequent
integers.

— Floats are described in a standard semi logarithmic way by transmitting the
exponent and the mantissa as integer values including their signs.



4.6 Internal States

The robot can be set into 3 distinct internal states. Depending on the activated
state different groups of commands have different effects. It is important to note
that if a command is used in the wrong state the real-time property may be
disrupted, the command may have an undesired effect, or no effect at all.

— State 0: The motion machine is deactivated and commands can be directed
towards the motors. Command groups 0,I can be used.

— State 1: HMDP state. The motion machine is on and overwrites motor com-
mands (group I). Instead the HMDP commands have to be used that control
the motion machine. At-time commands are possible but may interfere with
the timer and therefore the motion may not be precise (lost ticks may ap-
pear).

— State 2: “Plastic” state of the robot. The robot can be set manually into a
state, and keeps the current posture, while changes in the current posture
are possible by applying force to the servos.

4.7 Group 0 Administrative commands

This group communicates state variables and other information of the current
state of the system. The syntax is usually > XX for a command to the slave
and < XX for requested information. In addition, some commands for copying
motion patterns into the flash memory are provided. Servos can be turned on
and off. For the protection of the servos allowed ranges of position values of the
servos are defined. Zero positions ! can be re-defined, and the list of available
servos can be requested. These commands are typically used when the robot is
in state 0, but can also be used in the other two states. However, in state 2 they
affect the real-time property, and ticks may be lost.

4.8 Group I Static posture commands

The commands affect the posture of the robot directly. In state 0 these may be
used to control postures, which is useful in the development phase of the the
motions and in order to calibrate the zero positions. In addition, positions can
be read from the controller. There, the controller can distinguish between the
actual current position and the position that is targeted by the controller.

4.9 Group IT HMDP commands

An HMDP message starts with a systematic set of key characters which simplifies
the parsing of the protocol. An additional initial character in front of every
message can be custom defined in order to make it possible to add HMDP to
already existing messaging systems. Apart from the custom defined header the
first character of each HMDP messages can be either a P, a T, or S, indicating
a time-related, pattern-related or sensor-related command.

1 Zero positions are the calibrated values of the servos of a robot in an upright position
and the arms in a certain diagonal angle.
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Fig. 3. Experimental graphical user interface for motion design MotionDesigner: Cur-
rently the wave numbers have to chosen by hand (pink dots). Then a function (black
curve) is interpolated between support points (green dots).

5 Example for a visual motion design tool

We programmed a graphical user interface (GUI) (see Fig. 3) in which the coef-
ficients can be found be defining manually frequencies and support points. The
program calculates the coefficients and produces HMDP messages, that define
this particular motion pattern. Coefficients ¢; are calculated by solving the sys-
tem of equations that are defined by

z(t) =co+

Z Can+1,a SIN(P X Wy p X t) + Cont2,6c08(p X wpp X ).  (4)

0<n<max

Since a set x;(T;) for a certain T; and all wy, ,, are defined by the user, we have
a set of linear equations that can be solved by deriving the pseudo inverse.
In dependence of the ratio between the number of x;(T;) and the number of
coeflicients ¢; we get an under- or over-defined system of linear equations.

The program currently controls a virtual motion controller. The motion con-
trol part is C-code and can readily be implemented into a standard motion
controller ICs down to the level of PIC chips or similar.

6 Possible role in the 3D2Real project

One problem for the RoboCup project is that throughout the leagues a lot
of work is duplicated, and collaboration is rather sparse between the different
leagues. This is not a desirable situation as know-how is not transferred effec-
tively, and progress is slower than it could be since resources are bound to solve
the same problems over and over again. To address this situation, the 3D2Real
project was initiated in 2006.



The main idea of this project is to try and use synergy effects from a collab-
oration between researchers in the Humanoid and the Soccer Simulation League
(SSL). This collaboration includes a joint road map for the near future of both
leagues, as well as the specification of standards and the development of tools
that can be used in both leagues.

Traditionally, the SSL and the HL in RoboCup have had rather different
research topics. While researchers in the HL mainly worked on the design and
the low-level control of their robots, participants in the SSL were concerned with
high-level strategies and collaboration. In recent years, however, there have been
developments which might bring both leagues closer to each other. In the SSL,
there have been continuing efforts to introduce more realism into the rather ab-
stract simulation in order to ensure that the developed strategies can be trans-
ferred more easily to real robots. Humanoid robot simulation is the preferred
choice for many participants of the SSL in order to achieve this. In the HL,
on the other hand, the first multi-robot games have been held, and the great
progress in controlling the robots allows researchers to approach issues of col-
laboration and coordination which have been extensively studied in the SSL. In
short, both leagues are beginning to come closer to each other, and joint efforts
in the development of tools and architectures that allow easier transfer of knowl-
edge and technologies could speed up the mutual progress towards the 2050 goal
of RoboCup.

The goal we envision for the 3D2Real project is to have the finals of the
soccer simulation league using real robots by the year 2009 or 2010. For this
ambitious goal several steps are necessary in the next years to create the neces-
sary infrastructure and tools. First, the 3D simulator of the SSL [7] has to be
completed, and a real robot prototype has to be implemented as a simulation
model, the XML-based format RoSiML as used in the SimRobot simulator [8]
seems promising. According to the proposed road map, a technical challenge
would be held at RoboCup 2008 to test the ability to use the agent code of SSL
participants on a predetermined real robot. From 2008 until 2009, we propose
the development of a central parts repository (CPR). This would be a collection
of real robot designs, sensor and actuator models, complete robots, as well as
controllers for certain architectures. Participants of both HL. and SSL contribute
to this repository according to their expertise and interest. The format would
again be the RoSiML mentioned above. These contributions become a manda-
tory part for the HL qualification from 2009, and should be continued (at least)
until 2010, even after the 3D SSL final has taken place using real robots.

The HMDP introduced in this work could be used as a standard for the
motion description of the simulated and the real robots. In the simulation, the
agents are connected to the simulator over the network. This means that they
have to send messages (currently in ASCII strings) back to the simulator in order
to specify, e.g., desired positions for motors. Since many agents connect to the
simulator at once during a game this can lead to a high volume of network traffic
that can cause severe problems for the server. If the HMDP were used for the
description of motion patterns, longer messages describing the motions would
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Fig. 4. 3D2Real project: Layout of the control architecture. The hatched boxes show
how the different leagues contribute to the complete system architecture of the 3D2Real
project. The control program for simulation system and real robot system are identical.

only have to be sent sporadically when new patterns have to be set. Thus, the
HMDP would provide a good solution for very related problems in the 3D soccer
simulation league, and the humanoid league (as described in the introduction),
and might facilitate running the same code on simulated and real humanoids
eventually.

7 Discussion

The intention of this work is to provide a standard for the description of motion
patterns for several purposes. It can be seen as an abstract but flexible motion
description protocol in a server and client architecture. Moreover, it can be
used for simulation purposes and at the same time for connection between a
higher-level behavior control unit and a real-time motion controller. Its merits
are biggest in situations where motions patterns should be changed “on-the-fly”,
like in a scenario that uses developmental or evolutionary methods to change the
motion generation, but it also allows for a great flexibility in motion execution
in general.

The representation of motions by Fourier coefficients in the protocol and the
superposition principle are valuable properties for behavior abstraction, i.e., the
synthesis and blending of new, higher-level behaviors from compact representa-
tions of lower-level ones. This is one aspect we want to explore further in the
future, as well as the implementation of currently missing features like variable
time increments, sensor readings, and overflow of time values that can happen
at least theoretically.



Furthermore, the 3D2Real project is one example inside RoboCup where the
HMDP seems to be an appropriate tool. The plan is now to test and improve
the HMDP in dependence on results within the 3D2Real project.
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