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Abstract— Joint attention, i.e., the behavior of looking at the
same object another person is looking at, plays an important
role in both human communication and human-robot commu-
nication. Previous synthetic studies have focused on modeling
the developmental process of joint attention and have proposed
learning methods without any explicit instructions for joint
attention. The causal structure between a perception variable
(the caregiver’s face directions or individual objects) and an
action variable (gaze shift to the caregiver’s face or object
locations) is given in advance to learn joint attention. However,
such a structure is expected to be found by the robot through the
interaction experiences. This paper investigates how the transfer
entropy, that is an information theoretic measure, can be used
to quantify the causality inherent in the face-to-face interaction.
In the computer simulation of human-robot interaction, we
examined which pair of perceptions and actions are selected
as the causal pair and showed that the selected pairs can be
used to learn a sensorimotor map for achieving joint attention.

Index Terms— joint attention, transfer entropy, contingency
learning

I. INTRODUCTION

Joint attention, especially visual joint attention, is defined
as looking at an object that someone else is looking at. It can
be seen as one of the basic components in human communi-
cation since it appears to initiate communication with other
people. Joint attention has also been studied as a fundamental
ability for human-robot communication [1]. Some robotics
researchers have pointed out that joint attention may play
an important role in enabling smooth communication with
humans [2], [3]. Synthetic studies are also being conducted
to promote understanding of the underlying mechanisms of
the development of joint attention [4], [5].

Human infants seem to learn joint attention in ambiguous
situations where their caregivers do not always intend to
attain joint attention behavior with them. Previous synthetic
studies have proposed that the causality between gazing
behaviors of an infant and its caregiver is utilized to learn
joint attention in such ambiguous situations [4], [5]. These

studies assumed that a shift in the caregiver’s gaze implies
that there is something salient in the direction of her gaze, and
the salient object would be salient and hopefully preferred by
an infant robot, too.

This assumption implies an underlying causality, which
appears as the statistical bias in the infant: it frequently
finds something salient if it looks where its caregiver is
looking. Previous studies [4], [5] have shown that a robot
can acquire a sensorimotor mapping to achieve joint attention
merely by associating a pair of variables concerning such
causal experiences, namely the action variables to shift its
gaze and the preceding perception variables of the direction
of caregiver’s gaze. However, no previous work presented
a model for detection of such a causality by a robot. In
other words, how a robot can select out the causal pairs of
variables from possible candidates has not been addressed.
Robots usually have many candidates of variables due to their
multiple perceptional modalities and many degrees of motor
freedom. Moreover, it is unknown what kind of causality
would exist in the interaction due to the difficulty in modeling
human interaction. Development of a socially developmental
robot, building a robot that automatically selects out pairs of
perception and action variables that form a causal structure
is, therefore, a formidable challenge.

An important first step is to investigate how the causal-
ity in the interactions with a caregiver can be quantified.
Transfer entropy is an information theoretic measure to
detect causality that shares some of the desired properties of
mutual information but also takes account of the dynamics of
information transport [6]. This seems a promising measure
since it has been shown to need smaller samples and less
computational cost involved in detecting causality [7]. Sporns
et al. showed that a robot with eyes can detect the causal
structure inherent in a given sensorimotor coordination (i.e.,
visual tracking behavior) by using the transfer entropy [8].
However, they did not address the issue of learning new
behavior based on the found causality. In this study, therefore,



we investigated to apply the transfer entropy to detection of
causality in interactions with a caregiver, and then to utilize
it to learn new sensorimotor mapping, which appears to be a
building block for a basic social behavior, i.e., joint attention.

The rest of this paper is organized as follows. First, we
explain the contingency learning mechanism reported by
Nagai et al. [4] as one of the previous learning mechanisms
and the causality that a robot should find. Next, we introduce
a computer-simulated setting of the face-to-face interaction
to examine whether transfer entropy enables a robot to find
the causality in the interaction with a caregiver. We describe
how we calculate the transfer entropy, and then present our
experimental results with it. Finally, discussion on a future
issues and concluding remarks are given.

II. CAUSALITY TO BE DETECTED IN JOINT ATTENTION

Fig. 1. Behavior of joint attention

Figure 1 illustrates the behavior of joint attention that a
robot can acquire based on the learning mechanism proposed
in previous work [4]: it first observes the caregiver’s face and
then shifts its gaze to follow her gaze. Instead of explicitly
instructing how to perform such a behavior, Nagai et al. [4]
proposed that a robot could acquire a sensorimotor map for
joint attention by what they called contingency learning.

Since the robot had no experience with joint attention,
it sometimes succeeded but sometimes failed in finding
the same object that the caregiver was looking at. In the
contingency learning, its gaze shift and preceding perception
of the caregiver’s face direction were associated in both
occasionally succeeded and unfortunately failed attempts.
The assumption on the robot’s part of an implicit tendency on
the part of the caregiver to look at objects that are salient to a
robot enabled it to acquire joint attention through contingency
learning. This tendency derives a causality on its own gaze
shift: when the robot has observed something salient, it is
frequently because its gaze followed the direction of the
caregiver’s gaze. This causality appears as the statistical bias
based on frequent experiences of seeing something salient
when looking in the direction of the caregiver’s gaze. That
is, by associating the pairs of variables, its gaze shift as
an action variable and the caregiver’s face direction as a

preceding perceptual variable, the robot is able to acquire
the sensorimotor map for joint attention.

Nagai et al. demonstrated that a robot could acquire joint
attention by associating this causal pair of variables even with
no explicit instructions on how to perform joint attention.
However, the designer had to specify what kinds of variables
should be associated to acquire joint attention. We extended
the method of contingency learning proposed by Nagai et
al. [4] to investigate whether a robot could automatically find
a causal pair of variables to be associated to acquire joint
attention.

III. ENVIRONMENTAL SETTING

To examine whether a robot can find the causal pair of
variables in face-to-face interaction between a robot and a
caregiver, we start from a rough model of the caregiver’s
gaze shift. We simulate almost the same interaction as in the
previous studies [4], [5], but we add more actions such as
hand motion and more perceptual variables such as types
of an object that are not related to joint attention. The
purpose of this experiment is to confirm whether the robot
can eliminate such unrelated variables from candidates of
elements of sensorimotor map for joint attention.

Fig. 2. Overview of caregiver-robot interaction.

TABLE I
TYPES OF VARIABLES IN THE ROBOT.

type name elements

perception caregiver’s face Sf = {f1, f2, · · · , fN , fr, fφ}
type of object So = {o1, o2, · · · , oM , oφ}

action shifting the gaze Ag = {g1, g2, · · · , gN , gc}
moving the hands Ah = {h1, h2, · · · , hNh

}

preference frontal face of caregiver If = {0, 1}
object Io = {0, 1}

A. An environment and interactions between the caregiver
and robot models

Figure 2 shows the experimental setting of the computer
simulation. The robot sits across from the caregiver at a



fixed distance. Some objects are randomly placed on the table
located between the robot and the caregiver. Let N be the
number of spots of the positions on the table, M ′ (M ′ < N )
be the number of the objects placed on it, and M be the
number of possible objects. In such an environment, the robot
moves its hands and shifts its gaze, while the caregiver only
shifts her gaze.

In this simulation, the robot has three types of variables
as shown in Table I: the perception, action, and preference
variables. The perception variables mean the environmental
and the caregiver’s states observed by the robot. The action
and the preference ones indicate the robot’s actions and the
preferences for the consequent experiences of the actions,
respectively. The details of these variables are described later.

The caregiver and the robot take turns observing objects or
the other side in each time step as below. First, the caregiver
shifts her gaze. Then, the robot observes the caregiver’s face
or a spot on the table as a current target, that is, obtains the
information where the caregiver appears to looks at, Sf , or
what kinds of objects are observed, So. We assume that the
robot prefers both a frontal view of the face of the caregiver
and any objects to a profile view of her face. In the timing
of the observation, it also updates the preference variables of
a frontal face of the caregiver, If , and objects, Io. After the
observation, the robot moves its hand, Ah, and shifts its gaze
once, Ag.

The objects selected from M candidates and where they
are placed are changed every T steps. Note that placement
is re-arranged such that the observation of the caregiver and
the robot do not change: if the caregiver or the robot gazes
at a spot where there is no object, no object will be placed
on the spot; if the caregiver or the robot gazes at an object
on a certain spot, the object is not moved to another spot.

B. A robot model
The perception variables of the caregiver’s gaze, Sf , and

objects, So are updated when the robot observes a target.
The direction of the caregiver’s gaze in the t-th step is
denoted by sf

t = {f1, · · · , fN , fr, fφ}, which indicates what
spot she is looking at (f1, · · · , fN ), whether she is looking
at the robot (fr), or whether it is not looking at her face
(fφ). The perception variable about objects in the t-th step
indicates what it is looking at and is denoted by so

t =
{o1, o2, · · · , oM , oφ}, which corresponds to possible objects
(o1, · · · , oM ) or indicates that it is looking at the caregiver
or at a spot with no object on it (oφ).

The preference variables on a frontal view of the face of the
caregiver, If , and on objects, Io are updated in the timing of
the observation. These variables in the t-th step are denoted
by ift = {0, 1} and iot = {0, 1}, respectively, where ”0”
means that the robot does not look at its preferred face or
object while ”1” means the opposite.

After determining these variables, it shifts its gaze and
moves its hand. The gaze shift in the t-th step is denoted

by ag
t = {g1, · · · , gN , gc}, which indicates the target to be

gazed at, namely a certain position on the table (g1, · · · , gN )
or the face of the caregiver (gc). The hand motion in the t-th
step is denoted by ah

t = {h1, · · · , hNh
}, which indicates the

type of the motion (h1, · · · , hNh
), where Nh indicates the

number of hand motions and is set as Nh = N + 1 to make
up the number of elements between the action variables. The
robot select one of elements in the Ag and Ah randomly at
each time step.

C. A caregiver model

Fig. 3. Caregiver’s change in gaze based on communicative strategy.

Generally, a caregiver should be able to choose one from
communicative and non-communicative behaviors. Commu-
nicative behaviors on the caregiver’s part would be respond-
ing to the infant’s behaviors and trying to draw the attention
of the infant. Non-communicative behaviors would appear to
be random motions. Therefore, we modeled the caregiver’s
behavior such that it combined responsive, inductive, and
random behaviors with regard to the robot.

In each step, the caregiver first selects a behavior strategy:
she shifts her gaze based on a communicative strategy with
probability pc

c or by a completely random strategy. When
using the communicative strategy, she looks at the robot
or at an object on the table. We suppose that a caregiver
tends to shift her gaze using a communicative strategy, which
enables the robot to detect causality. Using the communica-
tive strategy, the caregiver has three options in shifting her



gaze: following the robot’s gaze (RJA process), shifting her
gaze as if trying to lead the robot’s gaze (IJA process),
and randomly selecting a target (random process). On the
contrary, she always randomly selects a target to gaze at using
the completely random strategy. Note that she may look at
the spots without any objects when using this strategy.

Figure 3 represents the process flow of the caregiver
change in gaze in the communicative strategy. The caregiver
first perceives a target and then selects an option based on
what she is looking at. If she is looking at the robot’s face,
she selects either the RJA process with probability pc

rja or
the random process. Otherwise, she selects either the IJA
process with probability pc

ija or the random process. In the
RJA process, she shifts her gaze to follow the direction of
the robot’s face. If the robot is not looking at an object, she
selects an object at random and shifts her gaze to it (see the
box on the bottom left in Figure 3). In the IJA process, she
shifts her gaze as if trying to lead the robot’s gaze to an
object that she is currently looking at. She first looks back to
the robot and then shifts her gaze to the target object in the
next step again (see the box on the bottom right in Figure 3).
Note that she randomly changes target objects only when
the placement of the target object is changed during the IJA
process.

D. Causality in the current setting

As shown in the previous studies [4], [5], the caregiver’s
direction of gaze sf

t leads to the predictable consequence of
the robot shifting its gaze ag

t , that is, in response to detection
of a salient object, iot+1. Conversely, the robot’s hand motions,
namely ah

t , is not causal because the caregiver does not
respond to those motions and her gaze does not lead to any
predictable consequence of those motions. Therefore, we can
expect that the robot to find the pair Sf , and Ag on Io, that
matches the one to which the acquisition of joint attention
is attributed in the previous work [4] if it can quantify the
causal relation of a combination of a perception, an action,
and own preference.

IV. TRANSFER ENTROPY

We adopt the transfer entropy [6] to quantify the causality
between a perception and an action on preference. Transfer
entropy is a kind of information measure that represents
the flow of information between stochastic variables, which
cannot be extracted by other information criteria such as
mutual information.

The transfer entropy that indicates the influence of a
stochastic variable Y on a stochastic variable X is calculated
by

TY →X =
∑

xt+1,xt∈X

∑
yt∈Y

p(xt+1, xt, yt) log
p(xt+1|xt, yt)
p(xt+1|xt)

, (1)

where xt and yt are elements of X and Y at the time step t,
respectively. This measure equates with the Kullback-Leibler
entropy between p(xt+1|xt) and p(xt+1|xt, yt).

Here, we calculate transfer entropy TAm,Sl→Ik which
indicates the influence of a pair of a perception variable Sl

(l = f, o) and an action Am (m = g, h) on a preference Ik

(k = f, o):

TAm,Sl→Ik =∑
Ik,Sl,Am

p(ikt+1, i
k
t , sl

t, a
m
t ) log

p(ikt+1|ikt , sl
t, a

m
t )

p(ikt+1|ikt )
, (2)

However, if an action and a preference have a strong causal
relationship, transfer entropy would not work for finding
the causal actions coordinated by any perception for the
preference. Therefore, we introduce transfer entropy, which
focuses on the effect of the combination of a perception
variable and an action variable (TC). TC is defined as

TCAm,Sl→Ik = TAm,Sl→Ik − TAm→Ik

=
∑

Ik,Sl,Am

p(ikt+1, i
k
t , sl

t, a
m
t ) log

p(ikt+1|ikt , sl
t, a

m
t )

p(ikt+1|ikt , am
t )

,

(3)

which indicates the combinatorial influence of a perception
variable Sl and an action Am on a preference Ik. This
appears to equate with the Kullback-Leibler entropy between
p(ikt+1|ikt , sl

t, a
m
t ) and p(ikt+1|ikt , am

t ).

V. EXPERIMENT

A. Experimental setting

We conducted a computer simulation to examine whether
the robot could find the causal structure in face-to-face
interactions using the proposed measure of the causality and
thereby acquire joint attention. To calculate transfer entropy,
it is necessary to estimate probability distributions of each
combination. To demonstrate the potential of the proposed
measure, we iterated the steps of the interaction and observed
the transition of the transfer entropy calculated from the
history of the robot’s experiences.

In experiments, we set the spots on the table at N = 9,
the number of objects in the environment at M = 10, and
the number of objects on the table at M ′ = 3. The other
parameters were set at (T, pc

rja, pc
ija) = (4, 0.8, 0.27). The

experiments lasted until the absolute difference between the
transfer entropies of all combinations of variables between
steps became less than the constant value θ. Here, we set it
as θ = 1.0 × 10−8.

B. Transfer entropy in face-to-face interactions

Figure 4 shows the time courses of TCs among percep-
tions, actions, and preferences in the interactions. The vertical



axis indicates the value of TC shown in the logarithmic scale
and the horizontal one indicates time steps. Note that the
probability of selecting the communicative strategy pc

c was
set at 1.0 in this simulation. Since the estimated probability
distribution was less accurate at the beginning of interactions,
the TCs seemed over-estimated. After the iteration of the in-
teractions, however, TCAg,Sf→Io ( the blue line in Figure 4)
appeared to be larger than the others. In other words, the
combination of perception of the caregiver’s gaze, the change
in gaze of the robot, and the preference for salient objects was
found to be causal. This result shows that the robot was able
to detect a causal combination of variables by using transfer
entropy and utilize the found combination to learn joint
attention. Note that we also analyzed the robustness of the
result in terms of the differences in the parameters, pc

rja and
pc

ija, of the caregiver’s model. Excepting in an extreme case
that the caregiver always selected the IJA process (pc

ija = 1),
we confirmed that the same combination of variables was
successfully found as causal combination.
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Fig. 4. Time courses of causal measure of combinations of variables in
face-to-face interactions between a caregiver and a robot.

We also examined to what extent the proposed method
depends on the assumption that the caregiver tends to look
at something. We compared the transfer entropies calculated
in the 40,000-th steps in the interactions with different proba-
bilities of the communicative strategy. If we set pc

c as a lower
value, the caregiver became less communicative, in other
words, she came to look more frequently at empty spots on
the table. Figure 5 shows the averages and standard deviations
for ten trials of the difference between TCAg,Sf→Io and the
highest TC among other combinations. Since the difference
became positive and TCAg,Sf→Io had a higher value when
pc

c was larger than 0.4, the proposed mechanism seemed to
work if the caregiver was somewhat communicative.

C. Learning joint attention with the detected causal variables

We also examined whether the combination of variables
with the maximum TC enables the robot to learn joint
attention. Figure 6 shows the histograms of experiences
where it had observed the caregiver’s face and chose to
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Fig. 5. Change in difference between TCAg,Sf→Io and largest TC in
other combinations based on probability pc

c.

shift its gaze before observing an object. Note that the value
of each quantum H̄(f, g) in the histograms indicates the
difference between the number of occurrences of quantum
H(f, g) and the average number of occurrences among the
quanta concerning the same perception:

H̄(f, g) = H(f, g) − 1
N

∑
g

H(f, g). (4)

The diagonal elements in Figure 6 correspond to the behavior
of joint attention. Therefore, Figure 6 shows that the robot
tended to succeed in observing an object when it occasionally
performed the same behavior as joint attention.
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Fig. 6. Distribution of experiences to Io = 1 in interactions between a
caregiver and a robot. In this graph, the pairs with the same number of
suffix, e.g., (f1, g1), corresponds to the behavior of joint attention.

As shown by Nagai et al., a robot can learn joint atten-
tion using contingency learning [4] in situations where the
experience of the robot is biased to occasionally succeed in
achieving joint attention. In the subsequent computer simu-
lation, we examined whether it could learn a sensorimotor
map for joint attention by contingency learning based on the
detected pair of perception and action variables.

The perception variable and the action variable included in
the causal combination with the highest TC were assigned to
the input and the output layer of a two-layered perceptron, re-
spectively (see Figure 7). Contingency learning is performed
by associating the sensorimotor variables despite success in



joint attention. Therefore, it can be implemented by using
the current action variables of gaze shifting as the desired
value of the output layer in backpropagation learning of the
perceptron. The perceptron was trained with data obtained
through 40,000 interactions in which the actions of the robot
and the caregiver were determined by the robot model and
the caregiver model described in section III, respectively.
Perception and action variables were encoded in an exclusive
way. For example, suppose that the robot finds something
salient by shifting its gaze to the i-th spot on the table after
observing the caregiver’s face, which is perceived as looking
in the j-th direction. In this case, the perceptron receives an
input vector of which the j-th element is one while the others
are zeros and receives a reference vector of which the i-th
element is one while the others are zeros.

After running ten learning trials each of which was con-
stituted by 40,000 interactions, we examined the average
success rate for joint attention. We tested whether the per-
ceptron could output the corresponding action variable to the
caregiver’s gaze direction for each N kinds of perceptional
input. The result shows that the success rate was 87%.
Therefore, it was confirmed that the causal variables selected
by the proposed method could be utilized to learn joint
attention.

Fig. 7. Network to learn joint attention.

VI. DISCUSSION AND CONCLUSION

We used transfer entropy as a measure to detect the
causality between perception and action variables in human-
robot interaction. We focused on face-to-face interaction
and showed that transfer entropy helped a robot to detect
important variables that constitute a causal structure inherent
in the interaction.

We also showed that causal variables selected by the
proposed method could be utilized in learning joint attention.
Since we evaluated the effectiveness of the proposed method
using the computer simulations only, we should examine
to what extent the proposed method can detect causality
in real-world interactions. We may start by adding other

action modalities such as pointing or vocalization, which
are expected to make human-robot interaction richer, thereby
to induce the robot in the natural behaviors of the human
caregiver.

The resolution of the random variables may influence
the estimation of transfer entropy concerning the variables.
An infant seems to be faced with situations in which the
resolutions of multimodal sensation or various kinds of action
are not even because these components develop in parallel
and according to a different time schedule. The resolutions
of random variables would improve incrementally along with
the infant’s development. Therefore, we should address the
issue of how a robot can improve such resolutions and main-
tain the development of social skill based on the detection of
the causalities.

Observations in developmental psychology imply that
many causalities are inherent in infant-caregiver interac-
tion [9] and that infants seem to acquire various social skills
based on these causalities. Our simulation can be regarded
as demonstrating a possible mechanism that leads the robot
to realize such an inherent causality in the interaction and
constitutes its behavior based on the causality. The acquired
behaviors would modify the causality and thereby lead the
robot to acquire the next behavior. In the future, therefore,
we should simulate how a robot can develop its social skills
based on the experienced causalities that were modified by
the ongoing process of acquiring new social skills. This
would be extended to the issue of parallel learning of social
skills. Furthermore, analyzing the elements found in higher
social skills might give us hints to model how others can be
understood by a bottom up way.
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