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Abstract 
 

To realize adaptive and robust manipulation, a robot should have several sensing modalities and 

coordinate their outputs to achieve the given task based on underlying constraint in the real 

environment.  This paper discusses on acquisition of multi-modal expression of slip consisting of 

vibration, pressure, and vision sensations through pick-up experiences.  A sensor network is 

proposed to acquire the expression, whose learning ability is demonstrated by a real experiment.  

The applicability of the learned network is also demonstrated by experiments to realize robust and 

adaptive picking. 

 

1 Introduction 
 
We can utilize our fingers to touch, pick up, and manipulate various kinds of objects making use of 

tactile, force, and vision sensors.  Although there have been an enormous number of studies on 

robot hands trying to reproduce such adaptive and dexterous behaviors [1], so far the performance is 

not satisfactory.  The reason is supposed to be not only lack of sophisticated control strategy, but 

poor sensing abilities: dynamics existing among the fingers and the object seems to be too 

complicated to be observed by the existing sensor system. 

 

A slip is one of such dynamic phenomena that often occurs during manipulation, therefore, should be 

observed by the sensor system.  Numerous attempts have been made to produce sensors that can 

observe slips.  Some studies utilized piezoelectric films embedded in soft materials, which could 



sense vibration [2] [3] [4] [5] [6].  They detected initial slips by processing the output of the films.  

Vibration information from piezoelectric receptors only helps to detect micro slips, but not to detect 

the direction of the slip.  Yamada and Cutkosky proposed to use not only piezoelectric receptors but 

a force sensor to sense the direction of the slip [7].  Several researches utilized strain gauges 

embedded in soft materials and differentiated the output with respect to space and/or time to detect 

slips[8][9].  Accelerometers [10] and air pressure sensors [11] were also used to detect slips by 

making use of the softness of the fingers.  Since the initial micro slips are local phenomena, some 

studies utilized distributed array sensors and detected slips by finding local changes on them 

[12][13][14][15]. 

 

These sensor systems can observe micro slips and can be utilized to avoid them: not to drop the 

object.  However, the designer should analyze micro slip phenomena and make a model to translate 

the vibration information into slip information by utilizing, for example, a FEM analysis.  As a 

result, positions of the receptors should be controlled precisely when the sensor is produced, and the 

system is prone to the modeling error.  Moreover, once a macro slip occurs, the robot should use a 

global sensor such as a vision sensor.  These macro and micro slips are, actually, not really 

independent but continuous physical phenomena.  Therefore, if the robot learns the correlation 

between the tactile sensor and the vision sensor, the tactile sensor is expected to observe the slip 

without the precise manufacturing and the modeling. 

 

In this paper, we propose a sensor network consisting of not only one modality but three modalities, 

piezoelectric films, strain gauges, and a vision sensor, each of which provides sensation of vibration, 

pressure, and vision, respectively.  The network is trained to acquire multi-modal expression of 

slips autonomously through pick-up experiences.  Before learning, the robot does not know the 

relation between these sensations and the slip can only be detected by the vision sensor.  Through 

pick-up experiences, it correlates the output of the vision with those of other receptors, and finally 

can learn to detect slips by vibration and pressure receptors without any physical modeling. 

 

The remainder of this paper is organized as follows.  First, we discuss about the multi-modal 

expression of the slip observed by a few sensations. Then, we propose a sensor network to acquire 

the relation between these sensations through experiences.  The learning ability of the proposed 

network is demonstrated by a real experiment.  Finally, we demonstrate that the learned network 

can be utilized to realize adaptive grasping by sensing micro slips.  In the experiments, each 

experiment is repeated and shows that the proposed system has robustness for the detecting slip. 

 



2 Multi-modal expression of the slip 
 
2.1 Macro and micro slips 
 
If the finger is rigid, a slip is observed as a relative movement between the finger and the object, and 

therefore, can be easily observed by sensors such as a vision sensor or strain gauges pasted on a 

surface of a finger [16].  However, once we introduce softness to the finger to increase robustness 

of the grasping and manipulation, it contacts with the object in certain area and phenomenon 

between them becomes complicated: at the beginning of the slip, there are few micro slips between 

the finger and the object, but there is no relative movement between them in a macro scale.  As the 

exerted force grows, the number of micro slips increases gradually, and then, suddenly the finger 

begins to move relatively with the object since the number of micro slips catastrophically increases.  

The micro slips should be observed to predict the macro slip, and the macro slip should also be 

observed to control amount of the slip, therefore, it is crucial to observe these slips to achieve 

adaptive manipulation. 

 

Although these slips are continuous phenomena, physical properties of sensors to observe them are 

different: the micro slips can be observed as vibrations by piezoelectric films or as spatial 

differentiation of a strain gauge array whereas the macro slips can be observed by a vision sensor.  

To utilize these receptors for smooth manipulation, therefore, the robot should know the relation 

between them.  In the existing work, they did not deal these slips as a continuous process, and the 

sensors are calibrated by the robot designer.  As a result, the sensor system is prone to the modeling 

error.  If the robot can acquire the relation between them through experiences, it can utilize their 

continuity and obtain robust sensor system for both macro and micro slips. 

 

2.2 Sensations of vibration and pressure 
 
If the finger has only the sense of vibration, it can detect the occurrence of the slip, but cannot 

observe its direction.  On the other hand, the sense of pressure only gives the direction and strength 

of applied local force and cannot detect the occurrence of the slip.  We could enhance the sensing 

ability of one of these sensations by making use of an array structure, but it will be more robust to 

utilize two different modalities together.  In our implementation, the piezoelectric films and the 

strain gauges are used to provide the sense of vibration and pressure, respectively. 

 

By introducing three different modalities, vision, vibration, and pressure, the sensing is expected to 

observe various contact conditions, but on the other hand, it is difficult to integrate these sensations 



for realizing a given task.  In the previous work, the relation between expressions in different 

modalities is ignored or calibrated by a human designer.  Therefore, the resultant system becomes 

brittle against the modeling error.  In this paper, we propose a sensor network that can learn the 

relation between the modalities through experiences.  In the early stage of learning, the robot 

detects the slip as relative motion in the vision sensor, that is, a macro slip.  The other modalities, 

sensations of vibration and pressure, will be trained through experiences.  After learning, the robot 

can sense the micro slip and its direction as well even if the designer does not calibrate the receptors. 

 
2.3 A sensor network that can learn multi-modal expression of the slip 
 
In Figure 1, we show a system sketch that consists of a robot hand equipped with tactile receptors 

and a vision sensor.  In Figure 2, we show a sensor network to acquire the multi-modal expression 

of the slip.  The outputs of vibration and pressure receptors are normalized by their maximum 

values and are given as activations of tactile nodes.  The visual information is coded as activations 

1v and 2v  denoting the relative movement between the hand and the object and the movement of the 

hand, respectively: 
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The tactile nodes jt  are connected to the output nodes io  by weights ijw : 
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The structure of the proposed network which learns the relation between the sensors is suited for 
Hebbian learning.  Hebbian learning is fast learning algorithm and is able to learn the 



correlation on line. Therefore, the weights ijw are updated basically based on the Hebbian 

learning rule according to the activations of tactile nodes and vision nodes [17], but it is slightly 
modified: 

ijjiij wtrvw ED � ' ,       (5) 

where D  and E  are a learning rate and a forgetting rate, respectively.  r  is a variable 

learning rate: 
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that accelerates the learning of a connection that has large weight, and decelerates the learning 
of other connections.  This term helps to eliminate the effect of steady state offsets of 
receptors. 
 

 

3 Experiments: picking up an object 
3.1 A robot system used for experiments 
 
A robot system used for experiments is shown in Figure 3.  It has a 7-DOF manipulator, PA-10 

(Mitsubishi Heavy Industry) as an arm, two 2-DOF fingers (Yasukawa Electric Corporation) 

equipped with anthropomorphic fingertips, and a vision sensor.  The detailed description of the 

anthropomorphic fingertip is shown in Figure 4[18].  It is basically imitating the human’s finger, 

which has a metal rod as a bone, inner and outer layers as cutis and epidermis layers.  We adopted 

PVDF (polyvinylidene fluoride) films as vibration receptors and foil strain gauges (Kyowa sensor 

system solutions) as pressure receptors.  The absolute value of a PVDF film is adopted as the 

output of a vibration receptor since the sign of the film data has no sense about vibration. We 

embedded 6 films and 6 strain gauges in each layer, that is, one fingertip has totally 24 receptors.  

The control rate is 1 [kHz].  Data from the tactile receptors and the vision sensor are updated in 1 

[kHz] and 30 [Hz], respectively. 1 [pixel] in the vision sensor equals 1.32 [mm] in the world 

coordinate frame. 

 

3.2 A Learning procedure 
 

If the behavior of the robot is random, it takes so much time to learn.  To accelerate learning, we 

embedded a simple pick-up behavior to the robot system shown in Figure 5: (1) The arm moves the 

hand upward in its Cartesian frame while distance between fingers is controlled to be smaller 



gradually, (2) the fingers slip along the surface of the object while the distance between fingers is not 

small enough, (3) the hand succeeds to pick up the object, (4) after it succeeds to pick up, the arm 

moves the hand downward in its Cartesian frame, (5) it continues to move while the fingers slip 

along the surface of the object downward.  Meanwhile, the sensor network learns the relation 

between the receptors and the vision sensor.  In the learning, the object is a cup that weight is 450 

[g].  In the learning procedure and other experiments after learning, the contact area on the fingertip, 

initial position and posture of the hand are the same, and the moving speed of the hand is 2.5 [cm/s]. 

 

We recorded the coded output of the vision sensor and output of tactile receptors during the behavior 

(Figure 6).  The numbers on the top of the figures indicate steps of the learning procedure.  The 

robot repeats the behavior 2 times in 20 [s].  Figure 6 (a) and (b) show the coded output of the 

vision sensor, 1v and 2v , when there is relative motion in the vision sensor between the hand and the 

object and when the hand moves upward/downward in the vision sensor, respectively. In these 

figures, the output of the vision sensor seems like chattering because of a following reason. The 

vision sensor is updated in 30 [Hz].  Therefore, if the vision sensor detects the motion of the object, 

it continues to output -1 or 1 at least 33 [ms].  However, if the motion of the object is slower than 

the sampling rate of the vision sensor, the vision sensor does not exactly output -1 or 1 in every 

frame. As a result, the output of the vision sensor seems like chattering.  Figure 6(c) and (d) show 

two typical time courses of the normalized output of strain gauges.  Some of the receptors only 

generate positive values like (d).   We can speculate that those receptors which only generate 

positive values are measuring grasping force.  Other receptors like (c) sense tangential force.   

Figure 6 (e) and (f) show two typical time courses of the unsigned normalized output of PVDF 

films.  Depending on the depth of the receptor, the sensitivity may change. From comparing Figure 

6(a) with (e), only when the relative motion is observed by the vision sensor 1v , a vibration receptor 

outputs large signal.  Therefore, the vibration receptor is expected to become a slip sensor. 

 

 

3.3 Leaning expression of the slip through experiences 
 
Before learning, the output of the network io  is 0  since we set the initial values of connection 

weights 0 ijw .  Therefore, the robot can detect occurrence of the slip and its direction by only the 

vision sensor before learning.  During the learning process, the network finds the correlation 

between output of the vision sensor and the tactile receptors. The learning is iterated until that the 

output of the network becomes large sufficiently.  Figure 7 shows the detected occurrence of slip 

by the vision sensor and that by the learned network after 7 learning trials.  The learned network 



can sense the slip earlier (0.76[s]) than just using the vision sensor (0.94[s]).  In this experiment 

system, the resolution of the vision sensor and the moving speed of the hand are 1.32 [mm/pixel] and 

2.5 [cm/s], respectively.  Thus, the vision sensor needs at least 2 frames (66 [ms]) to observe the 

macro slip.  The time difference of detected slip between the vision sensor and the proposed 

network is 0.18 [s] which is more than 5 frames.  Therefore, we conclude that the network can 

detect the micro slip before occurrence of the macro slip whereas the vision sensor can detect only 

the macro slip. 

 

In the top left graph, the network 1o  does not output 1 from 2 to 6 [s] and is discord from the 

output of the vision sensor 1v .  A reason is that the tactile sensor can observe the vibration only 

when the slip occurs.  Therefore, the output of the network 1o  equals 0 when the slip does not 

occur.  Additionally, a reason that the network 2o  continues to output 1 from 4.5 to 6 [s] whereas 

the vision sensor 2v outputs 0 in the top right graph is as follows.  The hand is stopped at 4.5 [s] by 

the designer's directive but continues to grasp the object at this time.  Therefore, the network 2o  

continues to output 1 whereas the vision sensor 2v  outputs 0 because there is no motion of the 

object. 

 

We repeat the experiment and verify whether the network can detect the slip in different objects from 

the learning phase. The objects are the cup (450[g]) in the learning phase, another cup which has the 

different friction coefficient, square timber of 250, 350, 450, 550, and 650 [g].  The robot repeats 

picking up the objects 50 times in each object.  Figure 8 shows averages and standard deviations 

of the first occurrence time of the slip.  This result shows that the learned network can adapt to 

different objects and can detect the slip earlier than the vision sensor. 

 

3.4 Pick up experiments utilizing the learned network 
 

By utilizing the learned network, the robot can successfully pick up the object without slips.  We 

implemented a simple controller: when the network or the vision sensor detects a slip, the robot 

increased the grasping force by changing the distance between the fingers.  In Figure 9, we show 

movements of the object in the vision sensor (a) by utilizing the neural network and (b) by utilizing 

only the vision sensor.  We could find that if the network is utilized to detect the slip, the robot can 

pick up the object 0.3 [s] earlier than just using the vision sensor (1.65[s]). 

 

We repeat the experiment and verify whether the network adapts to another object.  The robot 

repeats the experiment 50 times in the objects which are used in the learning phase and the square 

timber of 450 [g].  Figure 10 shows averages and standard deviation of time of picking up the 



objects. This figure shows that the robot using the network can pick up the object earlier than using 

the vision sensor and adapt to another object.  Moreover, we applied the learning method to other 

fingertips.  Some of them were capable to learn to pickup the object, but some were not.  The 

ability of the proposed method is obviously dependent on distribution of receptors.  Since we do 

not control it, the learning ability will change accordingly. 

 

We conducted another experiment.  At the beginning of the experiment, the robot picks up the cup 

and holds the condition of grasping. While the robot grasps the cup, we pour water into it to increase 

the weight.  The robot will detects a slip and increase the grasping force not to drop it.  In Figure 
11, we compare two cases: with the proposed network and without the network but only utilizing the 

vision sensor.  We can conclude that the hand can grasp the cup by adapting to the slip and does not 

drop if we utilize the learned network whereas the slippage is larger if we use only the vision 

information to detect the slip.  We also repeat the experiment and measure averages and standard 

deviations of the slippage pixels.  Figure 12 shows that the proposed network adapts to the slip 

and the amount of the slip is smaller than when the hand is controlled by the vision sensor. 
 

4 Conclusions and Discussion 
 

In this paper, we have proposed a network that can acquire the multi-modal expression of slips by 

making use of three different modalities: vibration, pressure, and vision sensations.  Through 

grasping experiences, the network is trained to sense not only macro slips but micro ones.  

Experimental results have demonstrated that the learned network can be utilized for adaptive 

grasping. 

 

Since the aim of this paper is to show basic learning ability of the proposed network, the task given 

for the robot is extremely simple: grasping and lifting up the object.  Further goal for developing 

such a sensor system is to deal with a variety of tasks.  Therefore, we should demonstrate further 

ability of the network by achieving more tasks, and hopefully really dexterous manipulation.  In the 

human development, the human may learn the complex relationship between the vision and the 

tactile through the experience, and will achieve the dexterous task without the vision.  In this sense, 

we should discuss further what kind of information should be processed from the vision sensor.  If 

the given task is simple like this paper, the robot achieves the task by the simple vision information.  

However, if the robot achieves the more complex task, the robot will need the complex visual 

information to learn the neural network.  We should also consider the procedure for learning. 

 

In the proposed method, the learning and executing phases are distinguished.  We should further 



consider the network architecture that can learn while it performs the given task.  If the network can 

learn in the context of sensory-motor coordination, the expression of phenomena in the network 

should be different since we do not have to reinforce the network by a certain sensor (in this case, a 

vision sensor) but just utilize the performance of the task. 
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Figure 1: A robot system consists of fingers equipped with tactile receptors and a vision 
sensor.  The relation between the sensor and receptors is not known beforehand.  The 
task for the robot is to pick up the object. 
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Figure 2: A sensor network that learns multi-modal expression of the slip.  The weights 

between the tactile nodes and the visual nodes are updated by a Hebbian rule. 

 

 

 

 

 



 
(a) A robot system used for experiments.  The robot has an arm, two fingers equipped with 

anthropomorphic fingertips, and a vision sensor.  The task for the robot is to pick up an object. 

 

 

(b) The robot hand with anthropomorphic fingertips.  The each finger has two degrees of freedom. 

Figure 3: The real robot system used for experiments. 



 

(a) A photo of the anthropomorphic fingertip of the robot system.  Its length and diameter are 

45mm and 25mm, respectively. 

 

(b) A cross sectional sketch of the fingertip.  The fingertip has two layers and a metal rod imitating 

the structure of the human’s. 

 
Figure 4: An anthropomorphic fingertip used for the experiments 
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Figure 5: An embedded behavior for the robot system to learn multi-modal expression of the 

slip. (1) The arm moves the hand upward in its Cartesian frame while the fingers are 

position-controlled to close, (2), (3) the hand succeeds to pick up the object. (4) After it 

succeeded to pick up, the arm moves the hand downward in its Cartesian frame, (5) it 

continues to move the hand downward while the fingers keep to touch the object. 

 

 

 

 

 



(a) the coded output of the vision sensor 1v       (b) the coded output of the vision sensor 2v  

when there is relative motion in vision the        when the hand moves upward/downward 
   sensor between the hand and the object.          in the vision sensor.

 
(c) output of a pressure receptor #2           (d) output of a pressure receptor #5 

 
(e) output of a vibration receptor #3           (f) output of a vibration receptor #4 

Figure 6: the coded output of the vision sensor and output of tactile receptors during 

repeating the behavior 2 times. 

 



 
Figure 7: Detected occurrence of slip by the vision sensor and that by the learned network 

after 7 learning trials.  Two graphs of top left show the occurrence of slip detected by a vision 

sensor (top) and by the proposed sensor network (bottom).  Since it is difficult to see the 

detailed difference between then, we magnify these graphs into [0.6, 1.1] in bottom two graphs.  

Two graphs of top right show the detected direction of the slip by the vision sensor (top) and by 

the proposed network. 



 

 

Figure 8: Averages and standard deviations of detected slip time show that the proposed 

network can detect the slip on the different objects from learning phase and can detect the slip 

earlier than the vision sensor. 
 



 
Figure 9: Observed macro slips in the vision sensor of pick-up experiments, by utilizing the 

proposed network (top) and by utilizing only vision sensor (bottom).  If we use proposed 

network, the macro slip stops at 1.35[s] whereas it does at 1.65[s] if we use only the vision 

sensor. 

 



 

Figure 10: The proposed network is utilized in the controlling of the grasping force and 

adapts to another object which is used in the learning phase. The network can pick up the 

objects earlier than the vision sensor because the network can detect the micro slip. 

 
 
Figure 11: Pick-up experiment 2.  The experimenter poured water into the cup that was 

grasped by the fingers.  The amount of slip is smaller when it is controlled by the proposed 

neural network than when it is controlled by the vision sensor. 



 

Figure 12: The proposed network adapts to the slip and the amount of the slip is smaller than 

when the hand is controlled by the vision sensor. 


