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Abstract. To achieve robust color perception under varying light con-
ditions in indoor and outdoor environments, we propose a three-step
method consisting of adaptive camera parameter control, image seg-
mentation and color classification. A controller for the intrinsic camera
parameters is used to improve color stability in the YUV space. Seg-
mentation is done to detect spatially coherent regions of uniform color
belonging to objects in the image. Then, a probabilistic classification
method is applied to label the colors by use of a Gaussian color distri-
bution model. Experiments under combination of artificial and natural
illuminations indoors and outdoors have been carried out. The results
show the feasibility of this approach as well as the problems that occur
under these highly diverse light situations. In particular we investigate
the application in a RoboCup soccer scenario pointing toward future
outdoor use.

Key words: color constancy, adaptive camera parameter control, seg-
mentation, color classification, outdoor color vision

1 Introduction

Computer vision has been for long identified to provide rich information about
the environment for mobile robots. One of the major challenges in interpreting
camera images is to cope with influences from illumination changes. In particular
color information, which humans easily can classify, may appear very differently
in the camera image. This is even more the case when the robot is supposed to
work in indoor and outdoor environments.

In the context of RoboCup several soccer leagues use color coded environ-
ments in well defined light conditions. One long-term goal of RoboCup is to
remedy these artificial regulations and cope with natural light and objects. Yet
up to now, most RoboCup teams use manually calibrated color tables and fixed
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camera parameters which have to be tuned right before the games. This tedious
procedure only works when the environment does not undergo severe changes
like direct sunlight and clouds during play.

We propose a combination of several techniques to approach this problem.
First of all we continuously control the intrinsic camera parameters aiming for
best possible color constancy. A first segmentation step based on Markov Ran-
dom Fields leads to regions of uniform colors, which are then probabilistically
classified to a set of discrete colors. Experiments convey that this method pro-
vides robust color classification under a variety of illumination conditions.

The paper is structured as follows. In chapter 2 we give an overview on re-
lated work regarding color constancy and color classification. Our approach is
described in chapter 3 including camera parameter control, color segmentation
and classification. In Chapter 4 we evaluate these steps by providing experi-
mental results. Chapter 5 concludes with a discussion of the results and future
work.

2 Related Work

A vast body of research has been done in the field of color constancy. Here the
focus traditionally lies on the identification of illumination-independent descrip-
tors for surfaces in a scene [1]. This includes the two tasks of determining the
illuminant of a scene and mapping color values to a set of descriptors. An impor-
tant instance of this general problem is the correction of colors in one image to
match another image with some other illumination [2]. The available algorithms
can be roughly divided into physics-based methods which try to model and
explain the underlying physical processes, such as the dichromatic reflectance
model, and statistics-based methods. These try to correlate distributions of col-
ors under different illuminations, usually requiring enough colors to be present in
the image. Examples are the diagonal method, gray-world methods, max-RGB
[3], gamut mapping [4] as well as machine learning methods [5]. Another op-
tion is the use of chromaticity (normalized) color spaces such as YUV or HSI,
where the brightness of each color is stored explicitly. It has been shown in [4]
that methods using only chromaticity show similar performance as in full RGB
space, but are more stable to shadows. Since the brightness also has an influence
on the color value in the image due to camera characteristics and limitations, in
our paper we go beyond those approaches by implementing an online method to
keep the brightness in the image stable.

As several authors [6] [7] [8] point out, such algorithms have to deal with
very big differences in the appereance of one color. Color regions may overlap,
and the values of a set of colors change in various and highly nonlinear ways.
This is particulary the case when the type of light changes, e.g. from natural to
artificial light.

The application of mobile robots enables the use of online methods, such as
online adaptation of camera parameters. The problem here lies in the nonlinear
control and calculation of the control error. The concrete meaning of a camera
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parameter can vary much between different cameras, and is often not exactly
specified. Even worse the relation between parameter value and effect is usually
very non-linear. One possible remedy is to apply learning methods as in [9].

One approach for determining the required control errors is the use of refer-
ence colors. For example white can be used to set the camera’s white balance
parameter. Catadioptric camera systems are used by many RoboCup teams.
Here a small colored ring can be laid around the camera objective so that it is
always visible in the image and does not hide the view of the field itself.

Another approach is the use of semantic knowledge about the environment.
This can be especially well applied in RoboCup environments due to the known
field specifications. [10] and [11] first compute the pose of the robot on the
field using mainly black-and-white information, then calculate the position of
colored objects and finally adapt to the observed colors dynamically. [12] apply
knowledge about the field and borders of objects. A comparable approach was
done by [13] to recognize roads, assuming that a road is mostly flat and the
car is driving on one. In our approach we avoid using such context information
to account for broader application scenarios. Alternatively [14] use a three-step
method to identify pixels usable as white reference; in contrast to our work they
only control the white balance parameter and require white colors to be present
in the environment.

Several papers investigate the benefits of first doing a segmentation or edge-
dectection step, and then classify the colors of whole segments. [15] and [16]
use such methods with the main aims of improved color recognition and fast
processing time. In [17] it was found that among different alternatives the method
of choosing an unsure color (”‘maybe-color”’) to fit to its surrounding ones gave
the best results.

Color classification by modeling color distributions as Gaussians was used by
[18] and [19]. [20] shows that a discrete set of illumination conditions (bright,
intermediate, dark) already improves the classification result significantly. In our
paper we give further evidence for such a differentiation, as well as highlighting
the benefits resulting from a continuous adaption.

3 Process for robust color perception

The proposed method consists of the following major processing steps:

1. segment vertical lines into regions based on spatial uniformity of color
2. calculate mean color value for each segment
3. classify each segment to a set of color representatives
4. control camera parameters using reference colors

These steps will be described in more detail in the following subsections.

3.1 Image Segmentation

We adopt a boundary-based Markov Random Field method for line-based seg-
mentation of an image. Markov Random Fields have been proposed as model
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Fig. 1. Image processing steps

for the visual field in the brain. Many variations of Markov Random Field have
been developed, some of them have been already applied to the task of image
segmentation. This method provides a sophisticated way to segment an image
into spatially uniform regions. Here, we introduce the idea of the boundary-based
Markov Random Field briefly.

First, we define an energy function E(f, l|d) as follows:

E(f, l|d) =
1
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where d is an intensity process vector representing the observed image line. Each
intensity value di is supposed to include some noise. f is the estimated value
vector. l is called line process. li represents the discontinuity (edge) between the
ith pixel and pixel i + 1. It is 1 if it is a boundary, and 0 otherwise.

The first term of equation 1 is for data fitting and tries to minimize the
error of estimation. The second term is for smoothness in space. While there is
no boundary specified by the line process li it tries to minimize the difference
between conjunct pixels fi and fi+1. When the line process li is 1, i.e. there is
a boundary, then no constraint between the conjunct pixels is introduced. The
third term of 1 is a constraint on the number of boundaries. This means there
should be less boundaries in the image than number of pixels.

In order to minimize the energy function (1), we use a hill-climbing method
and introduce derivatives of fi and li:
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where H(·) is a step function. Each parameter is updated with the above deriva-
tive iteratively until it reaches convergence.

After obtaining the segmentation of the image, the mean value of each seg-
ment is calculated and used for color classification.

3.2 Color Classification

A probabilistic classification method based on Mahalanobis distances is ap-
plied to label colors. A Gaussian model of the color distribution for each color,
consisting of mean vector and covariance matrix in YUV space must be pro-
vided beforehand. The mean color value of each segment is used to calculate
the Mahalanobis distances with respect to the color distribution models. To
illustrate this, one reference color is assumed to be a distribution with mean
µ = (µy, µu, µv) and covariance matrix Σ. The Mahalanobis distance between a
color value x = (xy, xu, xv) and this distribution is defined as:

DM (x) =
√

(x − µ)T Σ−1(x − µ) (4)

Each segment is associated to the reference color with the minimal Mahalanobis
distance to the segment’s mean value, provided this is below a predefined thresh-
old. This threshold value offers a way to tune the ratio between unidentified pixels
and false positive ones.

3.3 Camera Parameter Control

To achieve color constancy under different light conditions we use a set of PID
controllers to modify relevant intrinsic camera parameters. To compensate for
intensity changes of the illumination, Gain and Iris are being controlled, using
the mean Y value of a white reference color visible in the camera image.

To account for changes of the type of illumination the two White Balance
channels are being controlled by using the mean U and V values of the white
reference color. Furthermore, an additional red reference color is used to control
Saturation in the same way using the calculated mean saturation value.

The parameters of each PID controller can be tuned by analysis of the step
response switching from dark to bright illumination, from bright to dark and
between different types of illumination.
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Fig. 2. Step response with optimized control parameters for the brightness controller
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Fig. 3.3 shows a step response with optimized control parameters for the
Brightness controller, switching illumination from dark to bright. In this exam-
ple, the controller only operates on every fifth step.

After the PID parameter optimization, a proper desired value for each con-
troller has to be determined. This can be done by qualitative analysis of the
YUV color distribution. In a distribution optimal for color classification the col-
ors should be widely spread in the color space. On the other hand colors should
not be over-saturated, i.e. the distribution should not reach the borders of the
YUV cube. Furthermore the center of the distribution should lie in the center
of the given YUV space.

4 Experiments

To evaluate the performance of our approach, we conducted several experiments
in indoor and outdoor environments under different light conditions.

As basis for our experiments we used a VolksBot robot[21] with a catadiop-
tric camera system. A variant is used in the AIS/BIT RoboCup MSL team.
Processing was done on an onboard laptop with a Pentium M 1.8 GHz proces-
sor. The full vision processing takes less then 20 ms for one image, depending on
the number and sizes of recognized color regions. Thus the algorithm can work
in real-time.

The vision system consists of a Sony DSW 500 camera looking into a hyper-
bolic mirror, thus producing 360 degree panoramic YUV images. A ring of white
and red paper is fixed around the camera lens, see Fig.1 left. This ring provides
the reference colors used by the camera parameter controller without interfering
with the view of the scene itself.

The colored objects used for color classification are mainly taken from the
RoboCup scenario, in particular blue and yellow goals, a green field with white
lines, cyan and magenta markers, a red ball and black robots. For outdoor tests
we used a subset of these.

To account for a broad range of light conditions, we regard the following
situations:

1. Indoor: only artificial light of one light source (630 Lux)
2. Indoor: mixed artificial and indirect sun light (1370 Lux)
3. Indoor: only indirect sun light (500 Lux)
4. Outdoor: camera and objects in direct sun light (97,000 Lux)
5. Outdoor: camera and objects in shadow (2,550 Lux)

Fig.3 shows the camera images under these different light conditions.

4.1 Color constancy

Fig.4 shows the merged distributions of YUV values obtained from the color
objects under the three indoor light conditions. The upper left image shows the
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(a) indirect
sun light

(b) artificial
light

(c) sunshine (d) shadow

Fig. 3. Captured panoramic images with PID controller under four light conditions

3D-view and the upper right image shows the 2D-projection on the UV-plane
using PID control of the camera parameters. The lower left and right images
illustrate the distributions with fixed camera parameters and embedded camera
control in the UV-plane respectively.

It is shown how the color drift is greatly reduced when applying the PID
controller, while the colors drift heavily for the other two approaches. Not using
PID control, the drift can be so big that the color distributions overlap, making
it impossible to deduce from one YUV value a unique color class.

It should be noted that also with the PID control the colors significantly drift
depending on changes of direction of illumination, changes of intensity, changes
of the ratio of different kinds of illumination or reflections. Still, the PID control
provides better stability and spreading of the distributions compared to the other
approaches evaluated. The system provides highest color constancy, when both,
the object and the reference colors rings are exposed to equal light conditions.

The biggest change in color value occurs without any parameter control. It
is interesting that not only the brightness Y, but also U and V change when
illumination intensity decreases. This indicates that a simple brightness normal-
ization is not enough to identify colors robustly, giving reason to also control the
saturation value of the camera.

Table 1 lists mean values and standard deviations for three object colors un-
der diverse light conditions with different control methods for the indoor and
outdoor experiments. The table only shows the standard deviation in the direc-
tion of Y, U and V axes. Comparing the standard deviations of the different
approaches for a certain color, like e.g. red, the lower drift of the PID control
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Fig. 4. Plots of YUV color distribution indoors

method can be confirmed. It is apparent that the standard deviation with PID
control is nearly always smaller than for the others.

The conditions change drastically when going from indoor to natural light
conditions outdoors. The image in Fig.5 shows the YUV distributions of the
object colors and their projection into the UV-plane for the outdoor experiment
in direct sunshine and shadow. The reason for the observable higher color drift
lies in the fact of having a huge intensity range from 2550 to 97,000 Lux between
shadow and direct sunlight.

Especially in the experiment undertaken in direct sunlight these extreme illu-
mination ranges occur in a single scene, having the same objects partly exposed
to direct sunshine and partly lying in its own shadow. Furthermore, the drift in
color space is highly depending on the pose of the objects relative to the light
source and to the camera. Also surface properties of the objects have a bigger
influence here. Related to this huge illumination range, one can also see the need
for the saturation control, as saturation of an object color decreases for dark and
bright situations significantly.

The red color for example has a much lower saturation V value when the
camera is outdoors. We assume that not the kind of illumination, but the high
intensity and the limited color range of the camera sensor is responsible for this
effect. The color is much brighter outdoors; since the YUV space is of conical
shape, this results in a lower range of possible saturation values.
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Indoor Outdoor

PID No PID Embedded PID

red µ 127.9 216.8 69.0 133.2 179.6 87.9 162.2 194.1 81.1 134.9 213.6 60.6
red σ 15.6 8.9 4.6 44.6 53.2 33.2 17.7 12.6 10.8 8.8 6.3 10.1

yellow µ 187.0 140.0 44.0 206.7 118.4 81.6 219.1 148.9 51.9 189.5 163.5 24.1
yellow σ 26.0 5.2 9.8 34.8 21.3 34.1 20.5 10.1 30.9 16.3 7.3 11.5

blue µ 63.1 89.2 172.1 98.6 64.3 191.6 101.4 89.8 192.0 83.2 84.1 186.1
blue σ 24.1 5.2 9.8 43.8 26.8 23.1 32.2 8.7 14.0 22.8 21.6 23.8

Table 1. means µy,u,v and standard deviations σy,u,v of typical colors in YUV space
under various light condition in indoor/outdoor environment
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Fig. 5. YUV color distributions in outdoor environment

Still, the color distributions do not overlap, which indicates that a proper
classification of colors should be possible. This will be evaluated in the next
section.

4.2 Classification Results

First we have a look at the mean values and standard deviations of the reference
color distributions, since these form the basis for the color classification step. In
Fig. 4 upper right and Fig. 5 right, these regions are drawn as ellipses around
the distribution of the respective colors. The images show the projection of
the 3-dimensional ellipsoids on the UV-plane. The drawn ellipses represent the
borders of 2-σ, 3-σ and 4-σ areas. Since the ellipsoids differ in the Y-values they
cover, they do actually not overlap in the way the image of their projections may
suggest.

The drawing of the ellipsoids indicates what threshold to use to retrieve a
binary classification result. Since the majority of already measured color pixels
should be included, at least 3 σ seems reasonable. For a more robust identification
towards unexpected light variations a higher value could be useful. But as this
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(a) indirect
sun light

(b) artificial
light

(c) sunshine (d) shadow

Fig. 6. Classification results with PID controller in indoor and outdoor environments

can result in more false positive classifications, a compromise must be found.
For our classification experiments we chose a threshold of 3 σ.

Fig. 6 show the classification results in multiple light conditions. In gen-
eral for all situations the classification algorithm shows a good performance. In
the indoor environment all objects are recognized with their correct colors, and
only very few false positive classifications exist. In the outdoor environment the
method has problems with very dark pixels resulting from the high differences
in intensities due to sunlight and shadow.

5 Conclusion

We have presented a robust color perception method including PID controller
of camera parameters, segmentation by Markov Random Field, and classifica-
tion based on Mahalanobis distance. The PID controller provided enough color
constancy to be able to fuse the distribution under different light conditions
and to generate reference color models for indoor and outdoor. These reference
color models have shown to provide a robust basis for color classification under
a variety of different light conditions. The big difference of color distribution in
indoor and outdoor suggest the use of separate reference models for these two
cases.

The vast illumination range occurring outdoors within one image has shown
the physical limitations of the camera. Future work will investigate possible
use of attention based mechanisms to choose from different parameter sets for
different light situations.
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