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Abstract— Neurophysiology has revealed the existence of
mirror neurons in brain of macaque monkeys and they shows
similar activities during executing an observation of goal
directed movements performed by self and other. The concept of
the mirror neurons/systems[1] is very interesting and suggests
that behavior acquisition and the inferring intention of other
are related to each other. That is, the behavior learning modules
might be used not only for behavior acquisition/execution but
also for the understanding of the behavior/intention of other.

We propose a novel method not only to learn and execute a
variety of behaviors but also to understand behavior of others
supposing that the observer has already acquired the utilities
(state values in reinforcement learning scheme) of all kinds of
behaviors the observed agent can do. The method does not need
a precise world model or coordination transformation system
to deal with view difference caused by different viewpoints.
This paper shows that an observer can understand/recognize
a behavior of other not by precise object trajectory in al-
locentric/egocentric coordinate space but by estimated utility
transition during the observed behavior.

I. INTRODUCTION

Recent robots in real world are required to perform mul-
tiple tasks, adapt their behaviors in an encountered multi-
agent environment, and learn new cooperative/competitive
behaviors through the interaction with others. Reinforcement
learning has been studied well for motor skill learning and
robot behavior acquisition in single/multi agent environ-
ments. However, it is unrealistic to acquire various behaviors
from scratch without any instruction from others in real en-
vironment because of huge exploration space and enormous
learning time. Therefore, importance of instructions from
others has been increasing, and in order to understand the
instructions, it is necessary to infer their intentions to learn
purposive behaviors.

Understanding other agent behavior is also a very impor-
tant issue to realize social activities, for example, imitation
learning, cooperative/competitive behavior acquisition, and
so on. Recently, many researchers have studied on methods
of other agent’s behavior recognition/imitation system (e.g.
[2], [3], [4], [5], [6], [7]). These typical approaches assume
detailed knowledge of a given task, an environment, their
body structure and sensor/actuator configuration, and so on
based on which they can transform the observed sensory
data of the others’ behaviors into the global coordinate
system of the environment, or an egocentric parameter space
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like the joint space of the others to infer their intentions.
However, such an assumption seems unrealistic in the real
world and brittle to the sensor/actuator noise(s) or any
possible changes in the parameters. Furthermore, there are
a variety of motion trajectories for a behavior achieving a
certain task. The variety will be caused by constraints of
body and/or environments, or experiences received so far.
It is almost impossible to cover all variation of motion
trajectories even for one behavior achieving one certain
tasks. Additionally, almost of them focus on mimicry of
the observed motions. Mimicry is to reenact someone else’s
action, without that action leading to reaching an immediate
goal; it is to copy the behavior as in pantomime. It requires
no understanding of the action beyond the motor mappings.
Robotic and computational models dealing with mimicry set
to understand what are motor programs, motor parsing and
storage for sequences and the correspondence problem[8]. It
usually does not touch the mechanisms of empathy, and goal
selection. Conversely, emulation is when after observing an
action, the observer jumps to conclusions and performs only
those actions that will lead it to the goal, without caring about
the exact methods of the demonstrator (although observed
methods biases future actions). It requires sharing of values
and reading of rewarded behavior. It is in effect a degenerate
subset of imitation, and the one most often employed by non-
human primates. Imitation is the crowning of copying, the
sophisticated capability of reenacting sequence of actions to
detailed levels, with the agent clearly aiming for the same
objective as the demonstrator’s [9]. This paper focuses on
“emulation” of observed behavior.

Reinforcement learning generates not only an appropri-
ate behavior (a map from states to actions) to achieve a
given task but also an utility of the behavior, an estimated
discounted sum of reward value that will be received in
future while the robot is taking an optimal policy. This
estimated discounted sum of reward is called “state value.”
This value roughly indicates closeness to a goal state of
the given task, that is, if the agent is getting closer to
the goal, the value becomes higher. This suggests that the
observer may understand which goal the observed agent
likes to achieve if the value of the corresponding task is
going higher. The relationship between an agent and objects
such that the agent gets close to the object or the agent



faces to a direction is much easier to understand from
the observation, and therefore such qualitative information
should be utilized to infer what the observed agent likes to
do. The information might be far from precise ones, however,
it keeps qualitative information and we can estimate well
the temporal difference of the value during achieving the
given task. If the observer can estimate the value of each
behaviors of the other, it might be possible to recognize the
other’s intention, therefore the observer not only imitate the
observed behavior but also cooperative/competitive behaviors
according to the recognized intention.

We propose a novel method not to only learn/execute a
variety of behaviors but also to understand/emulate behaviors
of others. The method does not need a precise world model
or an accurate coordination transformation system to cope
with the problem of view dependency. We apply the method
to a simple multi-agent situation where the agent has kinds
of tasks such as chasing a ball, pushing a ball into a box,
passing a ball to another, and so on, and the observer judges
which goal the agent is now achieving from the observation
with estimated values.

II. EXPERIMENTAL SETUP

Fig. 1.

Two robots and color coded toys objects

Fig.1 shows two robots and color-coded objects, e.g., an
orange ball, a blue bucket, and an yellow box. The players are
VolksBots [10] mobile robots endowed with omni-directional
cameras on top. A simple color image processing is applied
in order to detect the color-coded objects and players in real-
time. The mobile platform is based on a differential wheeled
vehicle and has simple basic actions, e.g. approaching an
object, turning around it in clock-wise and counter-clock-
wise, which were designed in advance. The two robots play
by displacing objects, for example, dribbling a ball, kicking a
bucket, taking a ball to a box, bringing the bucket to the other
robot, and so on. While playing with objects, they watch each
other and try to understand observed behaviors and emulate
them, in case they see fit.

III. OUTLINE OF THE MECHANISMS

The reinforcement learning scheme, the state value func-
tion, and the modular learning system for various behavior
acquisition/emulation are explained, here.

A. Behavior Learning Based on Reinforcement Learning

Fig. 2. Agent-environment interaction
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Fig. 3. Sketch of state value propagation

Fig.2 shows a basic model of reinforcement learning. An
agent can discriminate a set S of distinct world states. The
world is modeled as a Markov process, making stochastic
transitions based on its current state and the action taken by
the agent based on a policy 7. The agent receives reward 7;
at each step t. State value V7™, the discounted sum of the
reward received over time under execution of policy 7, will
be calculated as follows:

VE= " ¢))
t=0

Fig.3 shows a sketch of a state value function where a robot
receives a positive reward when it stays at a specified goal
while zero reward else. The state value will be highest at the
state where the agent receives a reward and discounted value
is propagated backward to the most recent states.

The state value increases if the agent follows a good policy
m. The agent updates its policy through the interaction with
the environment in order to receive higher positive rewards
in future. Analogously, as animals get closer to former action
sequences that led to goals, they are more likely to retry it.
For further details, please refer to the textbook of Sutton and
Barto[11] or a survey of robot learning[12].

B. Modular Learning System
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Fig. 4. Modular learning system

In order to observe/learn/execute a number of behaviors
simultaneously, we adopt a modular learning system. Jacobs



and Jordan [13] proposed a mixture of experts, in which
a set of the expert modules learn and are weighted by
the gating system to produce the output. Fig.4 shows a
sketch of such a modular learning system. We prepare a
number of behavior modules (BM in the figure) each of
which adopts the behavior learning method described in III-
A. The module is assigned to one goal-oriented behavior
and estimates one state value V™. A module receives a
positive reward when it accomplishes the assigned behavior
and zero reward else. The behavior module has a controller
that generates predictions of next state values, selecting the
action with the maximum value. The gating module will then
select one output from the inputs of the different behavior
modules according to the player’s intention.

C. Behavior Categorization based on Estimated Values

Each behavior module can estimate a state value of
observed behavior at an arbitrary time t to accomplish
the specified task. An observer watches a demonstrator’s
behavior and maps the sensory information from an observer
viewpoint to a demonstrator’s one with a simple mapping
of state variables. Fig.5 shows a simple example of this
transformation. It detects color-coded objects on the omni-
directional image, finds the demonstrator, and shifts the axes
so that the position of the demonstrator comes to center of
the image. Then it roughly estimates the sensory information
in the egocentric coordinate and the state of the demonstrator.
Every behavior module estimates a sequence of its state value
from the estimated state of the observed demonstrator and
the system selects modules which values are increasing.
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Fig. 5. Simple view transformation from self’s to other’s. left : a captured

image the of observer, Center : object detection (center is self), Right :
moving the position of demonstrator to center
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Fig. 6. Sketch of different behaviors in a grid world

Fig.6 shows an example task of navigation in a grid
world. There is a goal state at the top center of the world.
An agent can move one of the neighboring square in the
grids every step. It receives a positive reward only when it
stays at the goal state while zero else. There are various
optimal/suboptimal policies for this task as shown in Fig.6.
If one tries to match the action that the agent took and the

goal state

Fig. 7. Inferring intention by the change of state value

one based on a certain policy in order to infer the agent’s
intention, he or she has to maintain various optimal policies
and evaluate all of them in the worst case.

On the other hand, if the agent follows an appropriate pol-
icy, the value is going up even if it is not exactly the optimal
one. Likewise, in emulation one is not committed with the
optimal policy, as the behaviors are the ones available in the
portfolio of the agent, which are not necessarily the optimal
ones, but the ones that the agent knows to lead to the goal
(Fig.7).

This indicates a possibility of robust intention recognition
even if several appropriate policies can exist for the current
task. An agent tends to acquire various policies depending
on the experience during learning. The observer cannot
practically estimate the performer’s experience beforehand,
therefore, it needs a robust intention recognition method,
which is provided by the estimation of state values.

The method has also a possibility of robustness against
calibration error of view transformation self’s to other’s. The
relationship between an demonstrator and objects such that
the demonstrator gets close to the object or the agent faces to
a direction is much easier to understand from the observation,
and therefore such qualitative information should be utilized
to infer what the observed agent intends. The information
might be far from precise, however, it keeps qualitative
information so it can estimate well the temporal difference
of the value.
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Fig. 8. Behavior inference diagram

While an observer watches a demonstrator’s behavior,
it uses the same behavior modules for categorization of
observed behavior as shown in Fig.8. Each behavior module
estimates the state value based on the estimated state of
the observed demonstrator and sends it to the selector. The
selector watches the sequence of the state values and selects
a set of possible behavior modules of which state values are
going up as a set of behaviors the demonstrator is currently
taking. As mentioned before, if the state value goes up during
a behavior, it means that the module is valid for explaining



the behavior. The observed behavior is categorized into a set
of behavior whose modules’ values are increasing.

Here we define reliability ¢ that indicates how much the
observed behavior would be reasonable to be categorized into
a behavior

g+0 ifVi—V,.1>0andg<1
g=199 ifVi—Vi1=0
g—p0 ifVi—Vi_1<0andg>0,

where 3 is an update parameter, and 0.1 in this paper. This
equation indicates that the reliability g will become large if
the estimated utility rises up and it will become low when
the estimated utility goes down. We put another condition in
order to keep g value from O to 1.

IV. EXPERIMENTAL RESULTS

In this section, we describe experimental results of behav-
ior generation based on my value, categorization of observed
behavior, and emulation of observed behavior, one by one.

A. My Action, My Value, My Behavior

We let one player learn a number of behaviors shown
in Table I at the beginning. In the environment, there are
two players, one with a magenta marker and the other
with a cyan marker, along with a yellow box, and a red
ball. There is no blue bucket at this moment. The player
has learned each behavior with a little human support and
acquired experiences enough to cover all of the explorable
state space. After the learning phase, the player can take
an appropriate action in every state based on value of the
action, then it produces a behavior. As mentioned, if it

Fig. 9. A behavior of pushing a ball into an yellow box

takes an optimal policy, the value of the behavior keeps
increasing until it reaches the goal state of the behavior
while the other values pace up and down. Fig.9 shows one
scene that a magenta player shows a behavior of pushing a
ball into a yellow box. Fig.10 shows a sequence of values
during the scene. The orange line indicates the value of the
behavior. It shows increasing tendency during the behavior.
The behavior is composed of behaviors of approaching a ball
and approaching a yellow box so that the red line goes up
in the earlier stage and the yellow line goes up in the later
stage.
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Fig. 10.  Sequence of values during a behavior of pushing a ball into
an yellow box, red line : approaching a ball, yellow line : approaching an
yellow box, orange line : pushing a ball to yellow box, light magenta :
approaching another player, dark magenta : pushing a ball to another player

Fig. 11. Magenta player observes an demonstrator’s behavior of pushing
a ball to the magenta player

1) Categorization of Observed Behavior: When a player
watches a behavior of the other, it categorizes the observed
behavior based on repertoire of its own behaviors. Fig.11
shows one scene in which the magenta player observes an
demonstrator’s behavior of pushing a ball to the magenta
player. Figs.12(a) and (b) show sequences of estimated
values and reliabilities of the behaviors, respectively, as
the demonstrator pushes a ball to the player. The dark
magenta line indicates the behavior and keeps tendency of
increasing value during the behavior in this figures. This
behavior is composed of behaviors of approaching a ball and
approaching to another player again, then, the red line goes
up at the earlier stage and the light purple line goes up at
the later stage in Fig.12(a). All reliabilities start from 0.5 and
increase if the value goes up and decrease else. Even when
the value stays low, if it is increasing with small value, the
reliability of the behavior increases rapidly. The reliability
of the behavior of pushing a ball into another player, dark
magenta line, reaches 1.0 at middle stage of the observed
behavior.

B. Emulation of Observed Behavior

Here, we introduce a new object in the environment, a blue
bucket. Because a player does not have any experience with
a blue bucket, there is no associated behavior with the object



TABLE I
LIST OF BEHAVIORS LEARNED BY SELF AND STATE VARIABLES FOR EACH BEHAVIOR

Behavior

State variables

Approaching a ball
Approaching an yellow box
Approaching another player
Pushing a ball to an yellow box
Pushing a ball to another player

distance to the ball

distance to the box position

distances to the ball, the player, and angle between them
distances to the ball, the box, and angle between them
distances to the ball, the player, and angle between them
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(a) Estimated Values
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(b) Reliabilities

Fig. 12. Sequence of estimated values and reliabilities during a behavior of
pushing a ball to the magenta player, red line : approaching a ball, yellow
line : approaching an yellow box, orange line : pushing a ball to yellow
box, light magenta : approaching another player, dark magenta : pushing a
ball to another player

in the player’s repertoire. However, after one player shows

some interaction with the blue bucket, the other should be

able to recognize the goal, and later effectively emulate it.
This procedure will be as follows:

1) A player watches a behavior of the demonstrator,

2) transforms the sensory information in observer’s coor-
dinate to the one in demonstrator’s coordinate,

3) reads demonstrator’s reward,

4) back-propagates the reward as values to sequence of
states estimated during the observation,

5) emulates the observed behavior and updates values by
exploration through trial and error or mental rehearsal.

First of all, a behavior of approaching a blue bucket is
shown to a player as a simple case. The player executes from
1 to 3 of the list above one by one. Fig.13(a) shows estimated
state value function after it reads the demonstrator’s reward.
The x and y axes indicate distance to the bucket and state
value, respectively. It has only one peek at a state where it

1 T 3
I
|
I 25 A
ost || A
A \/ \
| 2 \\
0.6 [ \
[ \
[ 15 \
[
o [ 1 \
[ N
oz [ os ~\
[
[
0 0

50 100 150 200 250 300
distance to a blue box

o 50 100 150 200 250 300 o
distance to a blue box
(a) Reward reading (b) Value Back-propagation

4

35 N\
3 [\
a5t [\
2t | \
151 | \

T AN

o5} | ~—

ol =
o 50 100 150 200 250 300
distance to a blue box

(c) Correction of Value

Fig. 13.  Development of value through observation of other

will get a positive reward and other state’s values are zero.
It back-propagates the reward to the sequenced states at 4th
procedure of the list above, then, estimates state values based
on the state sequence of observed behavior (see Fig.13(b)).

After the player estimates the value of the observed
behavior, it tries by itself, thereby achieving emulation. The
estimated state value function is a good reference to imitate
the observed behavior while the estimated state values might
be inconsistent because of difference of their body dynamics
or error of estimated sensory information during observation.
In order to correct values of the behavior, a state transition
model or self-experience of the behavior is necessary. A state
transition model can be acquired through some exploration. If
it has the model in advance through the experience of playing
with the object, it is able to use it without further exploration.
Fig.13(c) shows the corrected state value function after some
exploration.

Next, a behavior of pushing blue bucket to the yellow box
are shown to a player. It follows the same procedure of the
lists above, in this manner acquiring a new behavior through
the observation. Fig.14 shows a sequence of observed be-
havior and Fig.15 shows sequences of estimated values and
reliabilities of behaviors during the observation. The blue
and green lines indicate the behavior of approaching a blue
bucket and the one of pushing it to the yellow box. It shows
that it successfully recognizes the observed behavior.



Fig. 14. The magenta player observes an demonstrator’s behavior of
pushing a blue bucket to an yellow box

V. CONCLUSION

Above, values are defined as categories of behaviors,
which are defined by the achieved goals. The observer uses
its own reward functions to understand what the other will
do. Preliminary investigations in a similar context have been
done by Takahashi at el. [14] and they showed much better
robustness of behavior recognition than a typical method.
Unknown behaviors are also categorized and understood in
term of one’s own reward functions. Moreover, the agent
chooses the next action at every time step, and that action
is chosen according to experience of rewards that were
back-propagated through the states with the reinforcement
learning algorithm. Therefore, recognition of context leads
always to selection of the action that was most likely to
provide reward (adequate policy, not necessarily optimal).
This shows the choice of action as a process determined
by previous experience. Also in the case of novel goals,
the robot performing the action, uses his own action set.
This is proposed as a simple model of emulation and action
understanding.
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