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Abstract

Considering the wide range of possible behaviors to be acquired for domestic robots,
applying a single learning method is clearly insufficient. In this paper, we propose a
new strategy for behavior acquisition for domestic robots where the behaviors are
acquired using multiple differing learning methods that are subsequently incorpo-
rated into a common behavior selection system, enabling them to be performed in
appropriate situations. An example implementation of this strategy applied to the
entertainment humanoid robot QRIO is introduced and the results are discussed.
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1 Introduction

The field of domestic robots, intended to live with human users in everyday life,
has been explored rapidly in recent years [1][2][3][4]. Many of these robots have
shown impressive demonstrations such as playing music, dancing, and singing.
Despite these successes, researchers have noticed a difficulty in creating robots
that can entertain and attract the users for extended periods of time. For long-
term human-robot interaction, choreographed motion replay behaviors often
are generally inadequate. In order to realize a rich human-robot relationship,
robots need to obtain various interactive behaviors which offer end-users the
ability to explore and affect the robot’s reactions. Although most behaviors
implemented in existing commercial robots are hand-coded, the difficulty of
designing behaviors will only grow as robots try to obtain increasingly complex
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behaviors. The complexity of the behavioral response can increase in complex
environments, by introducing various sensors and actuators, and by dealing
with people, who are resistant to accurate modeling. A humanoid robot is
one extreme example where interactive behaviors are difficult to design. Users
expect human-like natural behaviors which do not contradict the humanoid’s
appearance.

In order to obtain such behaviors, various learning methods such as rein-
forcement learning [5], imitation [6], and other learning mechanisms utilizing
internal reward systems [7] have been proposed. These learning methods have
shown the ability to produce complex behaviors including the application to
humanoid robots. Any single learning method, however, is inadequate for ac-
quiring the wide repertoire of behaviors required for domestic robots. The
No-Free-Lunch theorem also indicates that no single learning method is capa-
ble of learning all behaviors at the highest efficiency [8]. This all argues for
the design of an architecture capable of utilizing multiple learning strategies,
incorporating their outputs into a single coherent behavioral end-product.

In this article, we develop a new strategy for acquiring various interactive
behaviors for domestic robots, which is referred to as Multi-method Learning
and Assimilation. Instead of searching for a single almighty learning method-
ology, we develop a system that can incorporate various behaviors acquired
using different learning methods in a consistent natural manner. An example
implementation of this strategy applied to the humanoid entertainment robot
QRIO [9] is shown and the results discussed.

2 Multi-method learning and Assimilation

From the persuasive arguments provided by Wolpert and Macready [8], we
infer that a single universal learning method that could learn any arbitrary
behavior in the most effective way does not exist. It is often the case that
learning methods are carefully chosen considering the characteristics of the
specific task to be learned. In the case of domestic robots where a wide range
of behaviors is expected to be acquired, utilizing a single learning method is
clearly inefficient. Therefore, we adopt the approach of learning new behaviors
by utilizing multiple learning methods and then incorporating these acquired
behaviors into a common behavior selection architecture that enables them to
run in a consistent and natural manner (Fig. 1). This incorporation process is
called assimilation in the Piagetian sense [10][11].

The process of assimilation is realized by incorporating newly learned behav-
iors as a state-action mapping:
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Fig. 1. Notional View of Multi-method Learning and Assimilation.

a = f(s) a : action, s : state (1)

and is associated with other necessary information involved in behavior se-
lection such as the motor resources required for the performance of those be-
haviors. States are variables calculated from sensory data, which are expected
to provide sufficient information for selecting appropriate actions for certain
tasks. One difficulty for assimilation lies in the fact that learned behaviors
involve different state space, action space, and representation of mappings de-
pending on the specific learning process. State space and action space are usu-
ally carefully selected for each behavior to be learned, often reducing the search
space for learning and sometimes establishing a simple relationship between
them. Representation of state-action mappings also vary where, for example,
some adopt tile codings and others adopt neural networks. One important
role of the assimilation process is to convert these diverse specific state-action
mappings into a more general mapping. The assimilated mapping adopts a
common state-action mapping representation where state-action spaces are
selected from a common set suitable for behaving in real world environments.

3 Assimilation utilizing the “Seed Schema”

After the conversion of the state-action mapping, the problem of behavior
selection, i.e., when to run the new behavior, arises. In our approach, we
adopt the use of a Situated Behavior Layer (hereafter referred to as SBL)
[12], a behavior selection method developed for application to the humanoid
robot QRIO, to address this problem. In this section we first explain the SBL
architecture and subsequently introduce the concept of “Seed Schema” which
enables the running of newly learned behaviors within the SBL framework.
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3.1 Situated Behavior Layer

SBL is a behavior selection architecture aimed to select and execute behaviors
in a consistent and natural manner. The architecture autonomously selects
behaviors based on a “homeostasis regulation rule” [13]. Namely, behaviors
are selected to maintain predefined internal states within proper ranges. In
addition to this, the architecture provides the following functions required for
humanoid robot control.

(1) Integration of behaviors.
(2) Parallel execution of behaviors.
(3) Interruption and resumption of behavior execution.

In SBL, the robot’s overall behavior consists of behavioral units called schemas.
Each schema is able to execute a simple behavior independent of other schemas,
and complex behaviors can be formed by simultaneously or sequentially exe-
cuting multiple schemas toward a common goal. Combination of schemas are
realized by having a parent schema that could execute multiple child schemas
sharing common target information, and these parent schemas can also have
parent schemas that form even more complex behaviors. Thus, the robot’s
overall behavior is realized as a tree-structured set of schemas, an example of
which is shown in Fig. 2.

Fig. 2. Example of tree structure of schema.

In the behavior selection phase, each schema computes its suitability and out-
puts the motor resources required for its execution. The computed suitability
of the schema, hereafter referred to as the activation level, is calculated based
on the external stimuli, internal states of the robot, and intentional signals
(Fig. 3). Intentional signals are used for integrating deliberative behavior con-
trol. Then, according to the activation level and motor resource information,
parallel execution of schemas is realized by the following steps:
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(1) Schema competition is conducted between schemas that are compatible
with the available resources. The schema with the highest activation level
is selected.

(2) The resources required for the selected schema is removed from the list
of available resources.

(3) If there remain other schemas that could run with the remaining re-
sources, return to step (1). If no other schema can run given the remaining
resources, the schema selection phase is complete.

For behavior execution, each schema is represented by a state machine as
shown in Fig. 4. Schemas include a sleep state in order to resume interrupted
behaviors.

Fig. 3. Activation level calculation of schema.

Fig. 4. State transition of schema.

3.2 Seed Schema

A Seed Schema is a template schema which loads and runs newly acquired
behaviors as a state-action mapping. The data to be loaded into the Seed
Schema are generated from the learned data from each learning system by the
following process:

(1) A general state space and action space are selected for each of the learned
behaviors which are to be assimilated.

(2) Considering the change resulting from this generalization of the state and
action spaces, the previously learned state-action mapping must also be
converted. This conversion is performed by generating state-action pairs
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from the previous mapping, converting these state-action pairs into new
state-action pairs, and then applying a regression function algorithm to
learn the new mapping.

In order to run the learned behaviors under the control of the SBL, the Seed
Schema also loads the additional information listed below:

(1) Motor resources required for executing the behavior.
(2) An Activation function Al(T ) for the learned behavior.

(1) is usually determined from the action space that the learned behavior
adopts, so the process of setting this value can be automated without difficulty.
On the other hand, (2) is not always considered during the behavior learning
phase. Nonetheless, there is some information that can be used to specify the
activation function. One example is the range of the state value set S that
enables the execution of the behavior. The activation level is set to 0 when
the state value s is out of range.

if s ∈/S then Al(T ) = 0 (2)

The activation level when the state value is in the proper range is currently
determined by the designer. The activation function, however, can be learned
by executing the schema and exploring the effect they have on the external
and internal state of the robot. One approach of automatically adjusting the
activation function is proposed by Sawada et al [14], and a similar approach
should also be applicable to Seed Schemas.

By adding newly learned behaviors to the SBL utilizing the Seed Schema, we
can incrementally and developmentally enrich the interactive behavior of the
robot.

3.3 Reorganization of tree structure

A difficult problem not yet discussed is where and how to position the Seed
Schema of the newly learned behavior within the SBL tree. Suppose the robot
learned a ball catching behavior. The robot may need to learn that the behav-
ior can run under the basketball subtree, but should not be executed under
the soccer subtree. The robot may also need to determine that this behavior is
likely to run more smoothly when combined with a ball tracking behavior. In
order to explore the appropriate place and combination of the Seed Schema,
the ability to reconstruct the tree is essential. Our implemented approach for
relocating the newly assimilated Seed Schema is described in Section 4.4.
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4 Implementation

The assimilation process of newly learned behaviors to the SBL utilizing the
Seed Schema was implemented on the humanoid robot QRIO (Fig. 5). The
overall architecture is based on OPEN-R [15] and sketched in Fig. 6. Sensory
information is collected in Short Term Memory (STM) which calculates the
state information of the environment considering the identity of both objects
and people. The SBL then calculates the activation level of each schema from
the current values of STM and the Internal State Model (ISM) in order to
select the appropriate schemas for execution. Finally, the selected schemas
output their actions to the Resource Manager which distributes them to the
appropriate controllers for execution.

In this section, we introduce the implemented design of the Seed Schema,
and show two different examples of new behavior assimilation from two quite
different learning systems. The first example involves the assimilation of a
bell-ringing behavior (Fig. 13) that was acquired using MINDY (Model of
INtelligence DYnamics) [16], a learning system utilizing internal reward. The
second example demonstrates the assimilation of a walk-hand-in-hand behav-
ior (Fig. 17) which was acquired through social learning using the actor-critic
learning method [17]. The bell ringing behavior was selected as a simple ex-
ample of a single agent behavior and the walk-hand-in-hand behavior was
selected as a typical social behavior suitable for domestic robots like QRIO.
Since the characteristics of the two behaviors are quite different, any single
learning method is unlikely to learn both of them effectively.

Fig. 5. SDR-4XII (QRIO) - Sony Entertainment Humanoid Robot.

4.1 Design of Seed Schema

We now overview the implemented design for the Seed Schema concept for
QRIO.
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Fig. 6. Overview of Humanoid robot SDR-4XII (QRIO) architecture.

4.1.1 Information Contained in the Seed Schema

The Seed Schema loads the following information to run the actual acquired
behavior:

(1) Definition of state information: This information defines the general
state information to be used for selecting the action. In the current im-
plementation, state information is selected from those available in the
STM. The range of state values where the behavior can be executed is
also included.

(2) Definition of action parameter: This information defines the action
parameters used for the behavior execution. The range of action param-
eters is also included.

(3) State-action mapping: A Support Vector Regression (SVR) style rep-
resentation [18] is adopted for the state-action mapping, aiming to output
a smooth action sequence even when the learned behavior is initially given
in a discrete form.

(4) Required resources for behavior execution: This information is usu-
ally determined from the action parameters.

(5) Preparatory action (Initialization): Since some learned behaviors
need to start from a special posture or state, the ability to run a prepara-
tory action before performing the actual behavior is provided here. This
function guarantees the independence of the Seed Schema and eases the
design of the tree.

(6) Activation Function: The activation function of the schema is deter-
mined by setting the following parameters.
• Initial condition to run the schema (Optional).
• End condition to stop the schema (Optional).
• Activation level when the schema is running.
In the case of a one-shot behavior, the activation level of the schema
returns to 0 when the behavior ends.
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In the current implementation, only the external state information is consid-
ered when calculating the activation level.

4.1.2 Limitations of the current Seed Schema Implementation

Although the Seed Schema is conceptually designed to be general, the current
implementation has some limitations on the behaviors that can be assimilated.
The limiting preconditions for a new skill to be assimilated successfully are as
follows:

(1) The information to specify the state for the new behavior must be ob-
tainable from STM. The state information currently calculated in STM
includes the position of the effectors, users, balls, landmarks, and other
predefined color regions. Instantaneous information such as direction and
length of sound, voice, and motions are also provided.

(2) The degrees of freedom for the action of the new behavior must already
be provided by the controllers within the QRIO architecture. All the joint
angles except the legs and the feet can be set to arbitrary values. The leg
and foot movements were limited to predefined types of behavior, such as
walking, standing up, and sitting down. The interface is open to add other
types of behaviors, but the function to set arbitrary joint angles was not
provided in order to prevent QRIO from falling down inadvertently. The
walking action can take parameters such as the position of the next step,
the speed of the step, and a change of direction. In addition to motion
control, the color of the robot’s LEDs can also take 28 level of RGB values,
and arbitrary spoken sentences can be output from the robot’s speaker.

(3) The new behavior must be expressed as a single state-action mapping. In
the behavior execution phase, the same action should always be chosen
when the same states are given. Behaviors which require randomness or
memory of past states are examples that cannot be currently assimilated.

4.2 Assimilation of Bell-ringing behavior

4.2.1 MINDY

MINDY [16] is an open-ended learning system which autonomously develops
a behavior controller through interaction with the environment. By adopting
both extrinsic and intrinsic motivations, the system forms a hierarchical net-
work of behavior control modules, each composed of a predictor and controller
(Fig. 7). The generation of the hierarchical network is realised by the following
processes. In the model, the agent seeks a causal correlation between observa-
tion variables (sensor variables, and internal states, etc.) and action variables
(variables which the agent can directly change). If there exists a causal corre-
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lation, both a predictor and a controller for the observation variable to control
can be learned. The predictor can be used for offline learning of the controller
and facilitates the learning process. Once the controller is learned successfully
for a particular observation variable, the variable can now be viewed as a new
action variable, opening the possibility of forming more complex state variable
control.

Real robot experiments were carried out using the MINDY architecture. The
designer predefined the network structure in this experiment as shown in Fig.
8. The module to control the hand position was firstly learned, and was later
utilized to form two other modules: one to ring a bell and the other to roll
a ball. These latter modules were formed to control the bell’s sound strength
and the velocity of the object respectively.

Fig. 7. Design of basic module in MINDY.

Fig. 8. Bell ringing and ball rolling behavior derived control network.

4.2.2 Assimilation with Seed Schema

In our research, we extracted the bell ringing behavior as a bell position -
hand position mapping from the controller of the sound strength module by
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setting a ringing bell sound to the goal value. The actual component of the
Seed Schema data appears as follows:

(1) Definition of the state information: The state space was remapped to
the color region position and the color of the object. The state information
range was set to the values where QRIO could reach the bell. This range
was learned within the MINDY learning system.

(2) Definition of action parameter: A motion controller to move the hand
effector to a specified position was used for action execution. The action
space was the cartesian X, Y, Z position of the hand’s goal position. The
range of the action space was set to the area which QRIO could reach.
This range was also specified within MINDY.

(3) State-action mapping: The state-action mapping was obtained by set-
ting a constant bell sound to the goal value of the controller of the sound
strength module. The SVR mapping was obtained by learning from a
randomly selected set of 1000 teaching data points.

(4) Required resources for behavior execution: The robot’s right arm
and palm were set as the required resources for the execution of the bell
ringing behavior.

(5) Preparatory action (Initialization): The motion of raising QRIO’s
right hand was chosen as the preparation action.

(6) Activation Function: The activation function was set to be positive
whenever the bell is in the proper range. No initial condition or end
condition was set. The schema’s activation level returns to 0 when the
arm motion ends.

4.3 Assimilation of Walk hand-in-hand behavior

4.3.1 Social Learning with Actor-Critic Method

As pointed out recently by Lindblom and Ziemke [19], development of indi-
vidual intelligence requires not only physical situatedness but also social situ-
atedness. Social Learning, interactive learning where another individual plays
an essential role, is also a necessity for humanoid robots. The requirements for
a social learning method are as follows:

(1) Learning should reach a sufficient level of performance within a realistic
time.

(2) The learning method should be tolerant to uncertainty produced by the
other agent.

The Actor-Critic reinforcement learning method (Fig. 11) was selected as the
learning algorithm. The method has proved to be effective for short duration
learning and is also suitable for uncertainty management [20]. It is also well-
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suited for learning in a continuous action space which makes the method
effective for learning humanoid robot behaviors [5].

The walk-hand-in-hand behavior is learned as a state-action mapping where
the state values are the hand position in a horizontal plane (Fig. 9) obtained at
high frequency from an OPEN-R object managing the joint angle information
of the robot’s arms and shoulder, and the action space is the distance and the
direction (yaw angle) of the robot’s next footstep (Fig. 10). The state space
was quantized into 7×7 values, and action was expressed as normalized distri-
butions whose mean values and standard deviations are modified to increase
the probability of actions with positive TD-errors. A negative reward (pun-
ishment) r = −1.0 was provided when QRIO fell down, and a positive reward
r = 0.3 was given when walking hand-in-hand was successful. In order to let
the users change the arm angle of QRIO freely, an OPEN-R object to free the
arm gain when the hand touch sensor is pushed was added to QRIO’s con-
trol system. Height and speed of the next step was changed according to the
chosen distance and direction of the next step to smooth the walking motion.

Fig. 9. State space of walk hand-in-hand behavior learning.

Fig. 10. Action space of walk hand-in-hand behavior learning.

4.3.2 Assimilation with Seed Schema

The walk hand-in-hand behavior was realized with SBL using the Seed Schema
method by setting the schema parameters as follows:

(1) Definition of the state information: State information was mapped
from the position of the left hand, which is obtained from the STM. The
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Fig. 11. Actor-Critic Method.

range of acceptable hand positions is set to the area within which QRIO
can move its hands.

(2) Definition of action parameters: Walking motion using the parame-
ters of distance, direction, and speed of step was used for action execution.

(3) State-action mapping: The SVR-style state-action mapping was ob-
tained utilizing the AOSVR method from teaching data produced from
each quantized state value.

(4) Required resources for skill execution: The robot’s legs and left arm
were set as the required resources for the execution of the walk-hand-in-
hand behavior.

(5) Preparatory action (Initialization): Standing up behavior was set
as a preparation behavior. The motion of standing up was set as the
preparatory action.

(6) Activation Function: The schema was set to be active when QRIO’s
hand was grabbed by the user. This was realized by setting the initial
condition as an event when the user grabs QRIO’s hand, and the end
condition as an event when the user presses QRIO’s head button.

The OPEN-R object to release the arm gain was also utilized with the Seed
Schema.

4.4 Reorganization Interface

An interface to dynamically reconstruct the SBL tree was implemented to
explore the correct combination and positioning of newly acquired schemas.
The implemented interface enables the following management of the SBL tree
in real-time without it being restarted:

(1) Generation of the predefined class schema including the Seed Schema.
(2) Connection/disconnection of schema connections within the SBL tree.
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Note that the reconstruction of the tree is realized by connection/disconnection
of the schema connection instead of addition/removal of schemas. This en-
ables adding/moving/removing behaviors as a unit of a subtree. Once these
modifications are made, the change to the tree structure can be saved and
loaded later. The implemented SBL reconstruction interface (the SBL Editor)
is shown with the Viewer (the SBL Viewer) that depicts the current SBL
structure (Fig. 12).

Fig. 12. SBL Editor - SBL reconstruction interface with SBL Viewer.

5 Results and Discussions

The results of the assimilation process for the two separately learned skills
are now described and discussed. The possibility of assimilating other learned
behaviors, an issue regarding the generality of the Seed Schema method, is
discussed in the last part of this section.

5.1 Assimilation of bell ringing behavior

The MINDY architecture enabled QRIO to acquire the bell ringing behavior
within approximately 10 trials of direct teaching by the user. Quantitative
results on this learning process are described by Sabe et al. [16] and will not
be discussed further in this paper.

This newly acquired bell ringing behavior was successfully assimilated into
the SBL utilizing the Seed Schema approach. We observed the Seed Schema
of the bell ringing behavior turning active only when the bell was put inside the
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reach of QRIO, and once the bell was removed, another appropriate schemas
performed their actions without any interference.

Although the assimilated behavior worked fine in general, some problems were
also noticed. First, QRIO often failed to hit the bell properly when the bell
was moved quickly. This was due to the delay of state information calculated
in the STM, which was not used in the standalone MINDY learning. The de-
lay of state information tends to increase in the assimilated process since the
general state information requires more time for calculation compared with
specific state information used for the behavior learning phase. In the current
imprementation, the general state information provided by the STM is cal-
culated considering the identity of each object, and is able to handle objects
out of the field of view by considering the actions the robot undertakes. Ro-
bust state information is obtained in exchange for a delay in state information
update. Robust state information is needed to execute multiple schemas si-
multaneously, and is useful in environments with multiple objects of interest.
This robustness, however, is not always needed during the separate standalone
behavior learning phase.

Another issue that we noticed during this experiment involves integrating sup-
portive behaviors for learned skills. In the case of the bell ringing behavior,
running the color region tracking behavior simultaneously would increase the
accuracy of the bell ringing. It is often the case that such supportive behav-
iors are implemented to run during the learning phase, in order to make the
learning task easier. We also note that some of those supportive behaviors
such as tracking are not easy to learn by themselves. In order to successfully
assimilate new skills learned with supporting behaviors, the assimilation pro-
cess should also provide these supportive behaviors to run in tandem with
the newly learned skill assimilated into SBL. This can be realized by an ad-
dition to the Seed Schema that enables the running of supportive behaviors
simultaneously.

5.2 Assimilation of walk hand-in-hand behavior

First, the results of the learning process itself for this behavior are discussed,
followed by the results of the assimilation process into the SBL. The evolution
of the number of successful steps QRIO was able to take until it fell down
during the learning process is shown in Fig. 14. The figure’s horizontal axis
shows the number of learning trials from the run’s beginning to where each trial
ends when QRIO falls. After about 50 trials (approximately one hour), QRIO
was able to smoothly walk hand-in-hand with the user. The learning proceeded
as follows. First, the critic converged after 10 trials. The state value function
after 10 trials is shown in Fig. 15. Since it takes time for QRIO to change its
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Fig. 13. Bell ringing behavior.

walking direction, it is reasonable that the stable state for QRIO is to have the
hand in front. Transition of the actor’s greedy action output is shown in Fig.
16 with the associated standard deviation of the output. The vectors show
the distance and direction of the next step for each state. The middle vector
is the greedy action output, and the ones on the sides are drawn as mean
value ± standard deviation vectors. QRIO is learning the actions necessary to
keep the grabbed hand at the front left part of its body, and the decreasing
standard deviation indicates that the learning is converging. Although the
user changed his walking direction on his own during the learning process,
the learning process was stable and acquired the behavior within a realistic
learning time. The actor-critic method’s ability to learn social behaviors was
affirmed.

Fig. 14. The number of successful steps taken by QRIO until falling down for each
learning trial.

The assimilation of the walk-hand-in-hand behavior into the SBL was also
successful. When the hand was grabbed, QRIO performed the walk-hand-in-
hand behavior and when it was lifted and its head button was pressed for a
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Fig. 15. State values acquired after 10 trials.

(a) After 10 trials (b) After 50 trials

Fig. 16. Transition of actor parameters (mean value and standard deviation for each
action parameter) for each state. The vector shows the distance and direction of the
next step and the direction that QRIO is facing is to the right. Three vectors are
shown for each state where the middle vector is the greedy output, and the ones on
the sides are calculated as mean value ± standard deviation. A state with closed
vectors has converged action parameters.

short time, the robot stopped the walk-hand-in-hand behavior and returned
to its usual behaviors.

Two issues were noticed during this assimilation experiment. The first involves
the delays in sensory information which we discussed previously. The delay of
sensor information seemed more critical in a feedback control behavior as in
this case. We observed some oscillation in the action due to this delay, but the
assimilated behavior was still performed at a sufficient level. Another issue
is related to change in the environment. When we try to let QRIO walk on
different floor conditions, the assimilated walk-hand-in-hand behavior is likely
to fail. This phenomenon reminds us that learning is not only for acquiring
behaviors, but also for modifying the behavior parameters to adapt to the
change in body structure, motors, sensors, or the environment. Our approach
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of freezing the learning process at a fixed skill level and then assimilating the
learned behavior can be criticized in that it loses the ability of further mod-
ifying the behavior parameters. The learning methods, however, required for
acquiring the behaviors and those used for adapting the assimilated behav-
ior’s parameters are not necessarily the same. Dividing the two processes and
adopting different learning methods for each may turn out to be an effective
approach.

Fig. 17. Walk hand-in-hand behavior.

5.3 Assimilation of other behaviors

Theoretical discussions on the possiblity of assimilating other behaviors were
described earlier in Section 4.1.2. If the learned behaviors can be expressed
as mappings of the states and actions provided in the QRIO architecture,
the behaviors can be assimilated independently of how they are acquired. For
behaviors, however, that are not best represented in this manner, difficulties
may arise. For example, experimental results indicate that some learned be-
haviors might not assimilate properly if they are required to use other than
state-action representations. Dynamic behaviors that require high frequency
state update information might fail to be assimilated properly. One way to
avoid this problem is to assimilate the behavior as a sensorimotor mapping
instead of a state-action mapping. Behaviors that depend heavily on change in
the environment are also not well-suited for the current assimilation methods.
Applying parameter tuning methods such as gradient descent methods should
help in addressing this problem.
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6 Related Work

There is a large body of research conducted on the general topic of machine
learning for humanoid robots, with a few attacking the problem in a manner
similar to this research. For example, Fitzpatrick and Metta [21] studied learn-
ing object affordances as causal relations, while Ogata et al. [22] focussed on
learning a walking hand-in-hand behavior. However, most researches involved
with machine learning of humanoids thus far have focused on a single task cat-
egory, adopting only a single learning method. The idea of this research in this
article is to utilize multiple learning methods to acquire the wide repertoire
of behaviors required for humanoid robots.

The idea of utilizing multiple different learning methods for robot control is
not commonplace, but there is significant research conducted under the term
of multi-strategy learning [23]. Gordon and Subramanian [24] developed a mul-
tistrategy system that combines two learning methods: operationalization of
high-level advice provided by a human with incremental, refinement using a
genetic algorithm. The approach provided two advantages: an initial boost
of learning utilizing high level knowledge, and robustness and improvement
with the genetic algorithm. Ram and Santamaria [25] examined the effect of
combining case-based reasoning and reinforcement learning for an autonomous
robotic navigation task. The system performed online adaptation resulting in
improvement of reactive control, as well as using an online case based learning
algorithm that resulted in a library of cases that capture environmental regu-
larities necessary for online adaptation. The difference between these research
examples when compared to our approach is that they consider combining
learning methods that work at different levels, while in our research, we strive
to form a general interface for incorporating skills acquired under different
learning methods but working at the same behavioral level.

Finally, the work by Caruana [26] is suggestive. In our approach, the learning
processes for the different behaviors are fully independent from each other.
However, Caruana’s work indicates that some tasks are correlated and thus
may be learned more effectively by using complementary learning methods.

7 Conclusions and Future work

A new strategy for behavior acquisition in domestic robots, Multiple-method
learning and Assimilation was described and an example implementation of
the approach to the entertainment robot QRIO was introduced. We showed
that skills acquired under different learning methods can be incorporated into
a common behavior selection architecture, enabling them to be performed at
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appropriate situations.

In the current implementation, most of the assimilation process is carried out
manually by the designer. One important issue remaining as future work is
the automation of this process.
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