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Abstract

This paper introduces a synthetic study
which investigates the role of shaking behav-
ior in object category acquisition. By shaking
objects with several holding positions and ob-
taining the amplitude spectrums of the audi-
tory signal, a robot with poor control ability
can acquire object categories such as rigid ob-
jects, paper materials, and PET bottles with
water. The result indicates the possiblity that
dynamic touch is more effective for categoriza-
tion than static touch such as grasping since
they provide the agent with the information
of the whole object enabling them to acquire
object categories independent of size, shape,
and contact condition.

1. Introduction

Many attempts to develop humanoid robots which
live with humans in daily environments are made to-
day (Fujita and Kitano, 1998) (Ishiguro et al., 2001)
(Sakagami et al., 2002) (Kaneko et al., 2004). Such
robots are expected to recognize and handle vari-
ous objects that exist in daily environments to help
and entertain the users. However, most current hu-
manoid robots are equipped with fixed recognition
systems based only on visual information such as col-
ors and textures. Therefore, it is often the case that
they can handle only few predefined objects such as
balls and markers, and recognition often fails under
different light conditions or backgrounds. In the case
of humanoid robots which handle wider variety of ob-
jects often unknown in advance, the ideal approach
would be to acquire multi-modal object categories by
themselves through interaction with the objects.
The process of acquiring daily object cate-
gories is what every human infant goes through
(Slater and Lewis, 2007). Human children are
known to be an active explorer of the world from the
very first stage of their development (Hofsten, 1984)
(Molina and Jouen, 2004). They actively touch the

objects to form multi-modal representation of the
objects (Gibson and Walker, 1984) (Rochat, 2004)
(Streri and Feron, 2005), although the concrete pro-
cess is not well understood. Accordingly, sev-
eral robotic experiments have been performed to
investigate the role of infants’ typical exploring
behavior in acquiring multi-modal representation
of objects. Just to mention a few, Natale et
al. (Natale et al., 2004) made a humanoid robot
grasp various objects to obtain haptic informa-
tion such as shape and hardness which are sub-
sequently processed in a self organizing map to
form the representation of the objects. The re-
search is extended by robots with tactile sen-
sors to study how cutaneous sense helps in rec-
ognizing the objects (Natale and Torres-Jara, 2006)
(Takamuku et al., 2007). On the other hand, Ogata
et al. (Ogata et al., 2005) made their humanoid
robot hit the objects to obtain their dynamic prop-
erties. In this case, the representations were built
by processing the resulting multi-modal sensory se-
quence with a recurrent neural network with para-
metric bias. These existing studies have succeeded
in showing the importance of active tactile explo-
ration in enriching the representation of the objects.
However, we observe a critical problem which make
it difficult to apply the method to object category
acquisition of humanoid robots and to explain the
case in infants. The exploring behavior investigated
in the existing studies such as grasping and hitting
can only obtain information of object parts. There-
fore, existing approaches tend to fail in recognizing
the object category when the size, shape, or contact
condition changes.

In order to avoid such a problem, we focus on an-
other frequently observed behavior of infants, shak-
ing. Although the difficulty of measuring and con-
trolling the behavior have kept it from being a hot
topic in the field of developmental psychology, there
are enough convincing reasons to do so. Firstly, it
is pointed out by Turvey (Turvey, 1996) and his col-
leagues that shaking behavior gives rich information



of the whole object. This effect eases the acquisi-
tion of object categories which can be generalized to
objects with different sizes, shapes, and contact con-
ditions. Secondly, the rhythmic actuation in shaking
behaviors realizes entrainment (Williamson, 1998)
which are expected to enable stable recognition un-
der rough control. This characteristic is important
to considering the case in infants who also have dif-
ficulty in precise control.

In this paper, we introduce preliminary results
of a robotic experiment which investigates the ef-
fectiveness of shaking behaviors in object category
acquisition. Although several exisiting studies are
found which shows that shaking behavior helps ob-
ject recognition of rigid objects by detecting the mo-
mentum of inertia (Atkeson et al., 1985), we show
for the first time that shaking behaviors are also
effective for acquiring humanlike daily object cate-
gories not limited to rigid ones. The paper consists
as follows. First, we introduce some related work
and describe our system of categorization. Next, we
explain the experiment design and show the results
with some analysis and discussions. Finally, conclu-
sion is given.

2. Related Work

The role of shaking behavior in exploring object
properties was initialy pointed out by the research
group of University of Connecticut headed by Tur-
vey (Turvey, 1996). They gave experimental results
which imply that shaking behavior, also refered to as
dynamic touch, gives information of object lengths,
shapes, and contact conditions. Their work still re-
mains as one of the largest efforts on this topic. How-
ever, the work dealt with only rigid objects such as
rods with different length. In the field of devel-
opmental psychology, very few studies on shaking
behavior are found (Shimizu and Norimatsu, 2005)
(Kloos and Amazeen, 2002). The lack of such stud-
ies comes from the difficulty of objective measure-
ments. If the object to shake is complex as in the
case of daily environments, it is also not plausible
to study the phenomena with simulation. Recently,
robotic experiments are attracting interest as an al-
ternative approach to investigate the experience of
infants in a objective manner and discuss the infor-
mation process. Two studies are found for shaking
where Williamson (Williamson, 1998) investigate the
arm control with neural oscillators, and Suzuki et al.
(Suzuki et al., 2006) attacks the problem of object
recognition for two cylinders with different length.
However, the role of shaking behavior in object cat-
egorization is not well investigated.

3. System

We propose a system of acquiring object categories
from sensory sequence obtained through shaking be-
havior. Fig. 1 shows a sketch of the information flow
in the system for the categorization. First a rhythmic
actuation on the arm produces stable cyclic behavior
under rough control by virtue of entrainment. Then,
the obtained sensory sequence are subsequently pro-
cessed by a Fourier transform circuit. Such circuits
are also found in human ears known as the cochlea
(Purves et al., 2004). Finally, the Fourier compo-
nents such as amplitude spectrums are utilized as
feature vectors to categorize the objects with a pat-
tern recognition system. In order to obtain a ob-
ject category which can be generalized to objects
with different size, shape, and contact condition, the
robot shakes each example object with several differ-
ent contact conditions to obtain enough representa-
tive vectors. We consider it feasable to include such
a process in the model since infants also change the
grasping condition through bimanual control.
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Figure 1: Information flow in proposed approach.

4. Experiment Design

In the experiment, we utilize a robotic arm with
McKibben pneumatic actuators.  The robot is
equipped with a microphone to obtain the auditory
data and a potentiometer to obtain joint angle data.
Fig. 2 shows a photograph of the robot.

The arm shakes the objects in the horizontal plane
to simplify the results by reducing the effect of grav-
ity. Stable limit cycle behavior was realized by con-
trolling the pressure of the pneumatic actuators as
antiphase sinusoid curves with feedback control on
the valves. We utilized a simple nearest neighbor
method for pattern recognition. The distance mea-
sure d is given in the following formula where p;; and
po; are components of the feature vectors and N is
the number of these components. In the case of am-
plitude spectrums or phase spectrums, N = 10000.
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Figure 2: Robot used in the experiment.
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The task was to acquire and recognize three ob-
ject categories, namely rigid objects, paper materi-
als, and PET bottles with water. The objects uti-
lized in the experiment are shown in Fig. 3. We
intended to utilize daily objects instead of controlled
objects to avoid being impractical. The task of ac-
quiring daily object categories is difficult to formalize
and cannot be investigated by utilizing controlled ob-
jects. The object in the left was used to teach the
category by shaking them in three different grasp-
ing conditions. Then, the other two objects were
shook with five different grasping conditions to test
the success rate of categorization. The duration of
shaking was approximately 30 seconds. The rigid ob-
jects differ in size and shape, papers differ in size and
thickness, and PET bottles differ in size, shape and
the amount of water inside. Since the objects have
different appearances including transparent cases, it
would be difficult to categorize them with only the vi-
sual information considering the change in light con-
dition and backgrounds.

5. Results and Discussions

Before investigating the effectiveness of the proposed
categorization system, we performed some analysis
on which sensory data and which Fourier components
would give feature vectors suitable for categorization.
In order to visualize the differences within/between
different object categories that would be obtained
during the learning phase, we fed the sensory se-
quences and the Fourier components of them into
self-organizing maps (Kohonen, 1995). The self-
organizing map reduces the dimension while keep-
ing the phase relation. The result of the clusterings
for raw auditory data, its amplitude spectrum and

(a) rigid bodyobjects (b) papermaterials

(c) PET bottles
with water

Figure 3: Objects used in experiment.

its phase spectrum are shown in Figs. 7, 8, and 9,
respectively. The network had two layers with 32
units each. The best matching unit for each input
pattern is plotted on the 32 x 32 grid. The figures
show that although the raw auditory data does not
form a feature vector suitable for categorization, the
amplitude spectrum of the auditory data turns out
to be a suitable one, independent of size, shape, and
contact condition. Figs. 10, 11, and 12 show the
results of clusterings for SOM with raw joint angle
sensory data, its amplitude spectrum, and its phase
spectrum. A network with the same structure and
size as the case of auditory data was utilized for the
analysis. In either cases, the feature vectors were de-
pendent to the sizes, shapes, and contact conditions
and thus not feasible for the categorization. Joint an-
gle data seemed dependent on the macroscopic fea-
ture such as mass rather than the microscopic feature
such as material.

The amplitude spectrums of auditory data from
the paper materials, the bottles with water, and the
rigid objects used in the experiment are shown in
Figs. 4, 5, and 6, respectively. The amplitude spec-
trum of auditory data from an arm shaking without
any objects are also included in the graph to show
which component is produced from the robot itself.
All paper materials showed spiky curves with equally
spaced decaying peaks, whereas all PET bottles with
water produced relatively smooth curves with a peak
in a low frequency region. The amplitude spectrums
from rigid objects used in the experiment were al-
most the same as those obtained in no object con-
dition. The shapes of the amplitude spectrums of
auditory data was qualitatively different for objects
from different categories, but qualitatively similar for



objects within the same category. The result indi-
cates the possibility to improve the robustness of cat-
egorization by introducing much more representative
data for each object category. Shaking the objects
with multiple different contact conditions is one way
to improve the performance.
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Figure 4: Amplitude spectrum of the paper materials.
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Figure 5: Amplitude spectrum of the bottles with water.
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Figure 6: Amplitude spectrum of the rigid objects.

Finally, Table 1 shows the success rate of catego-
rization by the nearest neighbor method when ampli-
tude spectrums of different sensory data was given.
The number of different contact conditions when the
example object was taught is also varied to observe
the effect of varying the contact condition to obtain
the generalization ability. We could observe that by

utilizing the auditory data, the system is able to ac-
quire object categories which can be generalized to
objects with different size, shape, and contact condi-
tion. The robot needed to shake the example objects
with multiple contact conditions to obtain categories
that can be generalized. However, the number of
contact condition could be very few. Categorization
failed with joint angle data as expected from the re-
sults shown in Fig. 11.

Table 1: Success rate of categorization.

# of contact
sensor for teaching | rigid | paper | bottle
potentiometer 3 100% | 0% 0%
microphone 1 0% | 10% | 70%
microphone 2 100% | 100% | 60%
microphone 3 100% | 100% | 80%

6. Conclusion

The results of the experiment show that an agent
with poor control ability can acquire object cate-
gories independent of size, shape, and contact con-
dition by shaking objects in different contact condi-
tions and utilizing the amplitude spectrum of audio
sensory data as feature vectors. The difficulties of
categorization faced in the current experiment are
similar to those that real human infants face. The
fact that extraction of amplitude spectrums of au-
ditory data, the information processing also found
in infants, proved to be effective for the task, indi-
cates the possible role of infants’ shaking behavior
on object category acquisition. Observation experi-
ments of infants are required to investigate the pos-
sibility. The acquisition of humanlike daily object
categories through active exploration is a fundamen-
tal task of communication since it forms the basis for
lexicon acquisition. However, the task is difficult to
formalize and no standard approach is found to ex-
plain the mechanism behind this process. Our work
shows that robotic experiments might turn out to
be the standard approach for this issue. At the cur-
rent experiment, all the objects were shook with the
same actuation. As for future work, we plan to con-
duct observation experiments to investigate how the
shaking motion should vary according to the sensory
feedback. Investigating haptic sensory feedbacks of
shaking behavior is another topic we plan to work on
in the future.
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Figure 7: SOM analysis result with raw auditory data.
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Figure 8: SOM analysis
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Figure 9: SOM analysis result with phase spectrum of

auditory data.
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Figure 10: SOM analysis result with raw angle data.
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Figure 11: SOM analysis result with amplitude spectrum
of angle data.
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Figure 12: SOM analysis result with phase
angle data.
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