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Abstract—Since body representation is one of the most fun-
damental issues for physical agents (humans, primates, and also
robots) to adaptively perform various kinds of tasks, a number
of learning methods have attempted to make robots acquire
their body representation. However, these previous methods
have supposed that the reference frame is given and fixed a
priori. Therefore, such acquisition has not been dealt.

This paper presents a model that enables a robot to acquire
cross-modal representation of its face based on VIP neurons
whose function (found in neuroscience) is not only to code the
location of visual stimuli in the head-centered reference frame
and but also to connect visual and tactile sensations. Preliminary
simulation results are shown and future issues are discussed.

Index Terms—body representation, integration of the sensor
information, multi-modal sensors

I. INTRODUCTION

Humans can perform various kinds of tasks through in-
teraction with objects, usually unconsciously, but sometimes
with consciousness of their own body representation in their
brains, based on which humans are supposed to decide
which action to take. Such representation has been called
the ”body schema” an unconscious neural map in which
multi-modal sensory data are unified [?] or ”body image” an
explicit mental representation of the body and its functions
[?]. Among studies related to the body representation, the
results of Ramachandran [?] and Iriki et al. [?] suggest that
representations in biological systems are flexible and acquired
by spatio-temporal integration of different modal sensory
data. In neuroscience, VIP neurons which are found in the
parietal lobe are activated for both visual stimuli coded in a
head-centered reference frame and the actual tactile stimuli
of the body (face) [?][?][?]. However, the acquisition of such
representation remains unclear.

Unlike conventional methods in robotics where the fixed
body representation is given by the designer, in cognitive de-
velopmental robotics [?], a number of learning methods have
attempted to make robots acquire their body representation by
aiming not only to understand the process of acquiring body
representation in humans but also to apply these models to
robots that can develop such representation. Yoshikawa et al.
[?] proposed a model in which the robot can detect its own
body in a camera image based on the invariance in multiple
sensory data. In Nabeshima et al.’s model [?], a robot learns

the properties of its controller following the synchronization
of the activation of visual and somatic sensations while a
robot is using a tool. Natare et al. [?] offered the means
for a robot not only to predict the visual information of a
hand from arm postures but also to estimate the Jacobian
for a reaching task. Furthermore, Stoytchev [?] proposed
a model that enables a robot to detect its own body on a
TV monitor based on the synchronization of the activation
of vision and proprioception. Hersch et al. [?] proposed an
algorithm through which a robot learns joint positions and
orientations based on the information of the observing hand’s
positions represented in both the head-centered and the hand-
centered reference frames. Additionally, in most studies, the
representation of invisible body parts such as a face or a back
cannot be acquired due to a lack of information. Fuke et al.
[?] proposed a model that acquired the body representation
of its invisible face by estimating its hand position from the
change of the proprioceptive sensation while touching it.

However, the above studies assumed that camera positions
are fixed or that the coordinate system to project the positions
to a reference frame (body-centered reference frame) in
visual space is given by the designer. They have not discussed
how the reference frame is acquired with the hierarchical
use of raw visual and proprioceptive sensory data. Such
visuospatial representation should be considered together
with the body representation since it is acquired by the
spatio-temporal integration of different modal sensory data
with neck and eyes in the developmental process. An exper-
iment with upside-down glasses is one evidence that agents
reacquire the reference frame for body parts localization
and body representation interdependently since the normal
relationship between motor information (eyeball angles) and
visual information is broken. According to Stratton [?],
the subject became able to interpret the visual space and
to perceive the integration of sensations about one week
later. This implies that visuospatial representation is flexible
and is acquired from experiences similar to learning body
representation.

Here, we propose a learning model in which a robot
acquires not only the head-centered reference frame but also
the cross-modal representation of the face based on raw
sensory data during self body observation. The acquired



cross-modal representation corresponds to the properties of
VIP neurons found in neuroscience. The rest of this paper is
organized as follows. First, we introduce neurophysiological
findings that provide a valuable clue about the acquisition
of face representation. Next, the system and the learning
algorithm details are described. Then the simulation results
are shown, and a discussion and a conclusion are given.

II. WHAT IS A VIP NEURON?
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Fig. 1. Visual and somatosensory receptive fields of neurons in VIP. The
same VIP neuron is activated when something is shown on the screen’s
shaded area in front of the monkey and when the face’s shaded area is
stimulated (modified from Fig. 1 in [?]).

The neurons in the adjacent ventral intraparietal area
(hereafter called VIP neurons) are known to have bimodal
properties, activated when a somatosensory receptive field is
stimulated and when a visual stimulus approaches the face
regardless where the monkey is looking. Fig. 1 (modified
from Fig. 1 in [?]) shows examples of the visual and
somatosensory receptive fields that the same VIP neurons
have. Therefore, the VIP area is supposed to be where
the spatial representation with respect to the head-centered
reference frame is integrated with tactile sensation. Here, we
propose a learning model that enables a robot to acquire the
head-centered reference frame and then to integrate the tactile
representation in the face with the acquired reference frame
as observed in VIP neurons.

III. VIP NEURON MODEL

An overview of the proposed model is shown in Fig. 2,
where two modules are involved. First, the robot acquires
the head-centered reference frame module. It has many sets
of eyeball angles and the retinotopic image (camera image)
which are represented in the eye information space in Fig.
2. Fig. 3 indicates the two sets of eye angles and position in
the camera image for the red object as an example. Before
learning, the robot could not figure out that this red object was
located at the same position in the head-centered reference
frame even though the two sets appear different. To construct
a head-centered reference frame, the robot needs an object
that can be assumed to be static in the surrounding space
as reference information. In our study, the robot associates
the eyeball angles and camera image by regarding ”the
proprioceptive sensation of its own body as the reference
information.

Next, in the VIP module, the robot integrates the tactile
sensation with the patterns of visual stimuli computed in the

head-centered reference frame in the former trained module
when it touches its own face with its hand. Finally, the robot
can acquire the cross-modal representation of its own face.
The details of each module are given next.

To validate the model, computer simulations were con-
ducted with a dynamics simulator that has arms with five
degrees of freedom and a binocular vision system as shown
in Fig. 4(a). Each eye has two degrees of freedom (pan and
tilt directions). 108 (6 × 6 × 3) green points in Fig. 4(a)
are given by the designer as reaching targets and placed at
0.02[m] intervals in the x, y, and z directions. In addition,
the blue ball represents the gaze point of the two eyes.
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Fig. 2. Overview of the proposed model

Fig. 3. Two sets of eyeball angles and positions in the camera image for
red objects placed at same position in head-centered reference frame
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Fig. 4. Simulation model

1) Arm posture space: The robot randomly moves its hand
toward one of the green points. The five joint angles of the left
arm are recorded and used to construct a Self Organizing Map
(SOM) [?] as training data. The SOM’s size is 10 × 10 and



the learned map is shown in Fig. 5. The number of learning
steps is 500.

After learning, in each step, the Euclidean distance be-
tween the representative vector of the i-th unit, Θi =
(θi

1, ..., θ
i
n), and the actual arm joint angles, Θ = (θ1, ..., θn)

(n = 5), is calculated. Then, using the winner unit (here the
carm-th unit) with the smallest Euclidean distance, activity
αarm

i of the arm posture space is computed as described
below:

αarm
i = e−β(darm

i )2 , (1)
darm

i = |Θi − Θcarm |, (2)
carm = arg min

i
|Θ − Θi|. (3)

Fig. 5. Arm posture space

2) Eyeball angle space: To collect the sets of the eyeball
angles and the location of the visual stimuli in the camera
image, the robot records the eyeball angles (pan-tilt angles
of each eye) while moving its gaze point around the hand
and simultaneously recording the arm joint angles. The data
are used to construct SOM as training data and the size is
15 × 15 as shown in Fig. 6. The number of learning steps
is 1000. In the same manner as the arm posture space, the
winner unit whose ID is ceye is computed as follows:

ceye = arg min
i

|Φ − Φi|, (4)

where the representative vector is

Φi = (φi
right−pan, φi

right−tilt, φ
i
left−pan, φi

left−tilt), (5)

and the vector of the actual eyeball angles is

Φ = (φright−pan, φright−tilt, φleft−pan, φleft−tilt). (6)

3) Image space: The robot simultaneously detects its hand
position in the camera reference frame. In our experiment, the
hand itself is colored red so that the robot can easily detect its
position. The right (left) image space is divided into 10× 10
units as shown in Fig. 4 (b). The winner unit whose ID is
crightimage(cleftimage) is the one in which the center of the
hand area is included.

Fig. 6. Eyeball angle space

4) Eye information space: In the next step, eye infor-
mation space is prepared to combine the activating pat-
terns in the three spaces of the eyeball angle and the
right and the left image spaces. SOM is constructed by
utilizing the IDs of the winner units in these spaces, C =
(ceye, crightimage, cleftimage), as the representative vector.
The size is 20 × 20 and the number of learning steps is
1000. The winner unit whose ID is ceyeinfo and the activity
αeyeinfo

i of the eye information space are defined in the same
manner as Eqs. (1)-(3).

5) Head-centered visual space: Finally, in the head-
centered visual space, the robot learns the association of these
combinations to code the same location in the head-centered
reference frame based on Hebbian learning. This association
is triggered by the same proprioceptive sensation. The units
of the head-centered visual space connect to the units of the
arm posture space in an one-to-one correspondence. Then
activity αspace

i of the head-centered visual space is

αspace
i = αarm

i . (7)

In the same way, the robot moves its hand toward the green
points and its gaze point around the hand while learning. The
connection weight between the i-th unit in the head-centered
visual space and the j-th unit in the eye information space,
wspace

ij , is updated based on Eqs. (8)-(10):

w̄space
ij (t + 1) =

wspace
ij (t + 1)∑N

i=0 wspace
ij (t + 1)

, (8)

where

wspace
ij (t + 1) = wspace

ij (t) + ∆wspace
ij , (9)

∆wspace
ij = ϵαspace

i αeyeinfo
j . (10)

N is 100, the number of units of the head-centered visual
space. After learning this association, the robot records the
cact−space-th unit that is most strongly connected to the
ceyeinfo-th unit.



B. VIP module

In the VIP module, the robot integrates the tactile stimuli
and the visual one that are specified in the head-centered
reference frame through tactile experience.

1) Visual trajectory space: First, the robot repeatedly
moves its hand toward the random positions on the surface
of its face from the front. In this case, the gaze point is
moved the same as before. At that time, the robot computes
cact−space by using the input data of the eyeball angles
and the positions in the camera reference frame. Then the
trajectory of three steps (cact−space(t − 2), cact−space(t −
1), cact−space(t)) is achieved and used as the representative
vector to construct SOM (visual trajectory space). t is the
time when the hand gets within 0.02[m] of the face. The
size is 10 × 10. After acquiring SOM, activity αtraj

i of the
visual trajectory space is calculated.

2) Integration (VIP) space: There are 12 × 12 tactile
sensor units on the face’s surface in the simulator. These
sensor units correspond to units in tactile space. If the robot
perceives tactile stimuli within period tconst after t, the ID
of the activated ctac-th unit in the tactile space is recorded.
Additionally, the activity of the tactile space is calculated
based on ctac:

αtac
i = e−ζ(dtac

i )2 , (11)

dtac
i = |i − ctac|. (12)

Also in this case, the tactile space units are connected to
those in the integration (VIP) space an one-to-one correspon-
dence. Activity αvip

i in the latter space is

αvip
i = αtac

i . (13)

The robot learns the association between the visual trajec-
tory space and the integration(VIP) space based on Hebbian
learning. The connection weight between the i-th unit in the
visual trajectory space and the j-th unit in the integration
(VIP) space, wvip

ij , is updated based on Eqs. (14)-(16):

w̄ij
vip(t + 1) =

wvip
ij (t + 1)∑N2

i=0 wvip
ij (t + 1)

, (14)

where

wvip
ij (t + 1) = wvip

ij (t) + ∆wvip
ij , (15)

∆wvip
ij = ϵαtraj

i αvip
j . (16)

N2 is 100, the number of the units of visual trajectory
space. Finally, by calculating the cact−vip-th unit that is most
strongly connected to ctraj-th unit, the robot can estimate the
tactile sensor units that are going to be hit by the hand.

IV. EXPERIMENTAL RESULTS

A. Head-centered reference frame module

Our proposed method described above is applied to the
simulation model. First, to evaluate the learning maturation
of Hebbian learning in the head-centered visual space, the
averaged variance of weights wspace

ij of the connection be-
tween one unit of the eye information space and all units of
the head-centered visual space is adopted. The stronger the
connection becomes between one unit of the former space
and the appropriate unit of the latter space, the smaller the
averaged variance is.

The averaged position on the head-centered visual space,
r̄i, which is connected from the i-th unit of the eye informa-
tion space is calculated as

r̄i =

∑N3
j=1 wspace

ij rj∑N3
j=1 wspace

ij

, (17)

where rj denotes the position vector of the j-th unit on
the head-centered visual space. Furthermore, the variance of
connection weights, r̂i, is calculated as

(r̂i)2 =

∑N3
j=1 wspace

ij ∥rj − r̄i∥2∑N3
j=1 wspace

ij

, (18)

where N3 is 400, the number of the units of eye information
space. The result of 6000 steps during learning is shown
in Fig. 7. As learning proceeds, variance converges and the
connection between the units seems potentiated.
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Fig. 7. Variances of the weights during the Hebbian learning of the
association between the eye information and the head-centered visual spaces

We also investigated how the robot adapts itself to sit-
uations in which its hand position in the head-centered
reference frame is the same although the sets of eye-
ball angles and positions in the camera image are dif-
ferent. As indicated in Fig. 8(a), the robot places its
hand at the fixed point and moves its gazing point for
300 steps as plotted with blue lines. In each step, the
robot calculates ceyeinfo using the perceived sensation of
ceye, crightimage, cleftimage and determines cact−space in the



head-centered visual space. Moreover, by assigning the rep-
resentative vector of Θcact−arm

= (θcact−arm

1 , ..., θ
cact−arm
n )

of the cact−arm-th unit in the arm posture space that is
interlinked to cact−space to Eq. (19), the position of the hand
Xcact−arm

= (xcact−arm , ycact−arm , zcact−arm) in the global
reference frame is calculated. The x, y, and z directions are
shown in Fig. 4(a).

Xcact−arm
= f(Θcact−arm

), (19)

where f is a transform function that is given to examine
the learning results. In each step, the moving average of
Xcact−arm

in the last four steps is computed and indicated
as the light blue point in Fig. 8(b) and Fig. 9. The robot can
approximately recall the arm posture that resembles the actual
one regardless of the eyeball angles and the positions in the
camera image. In addition, the histogram of difference (error)
between Xcact−arm

and the positions of the actual hand is
shown in Fig. 9. The average values of 300 errors for the
three directions are 0.01034[m](x axis), 0.01057[m](y), and
0.01289[m](z) and the mean error of the perspective direction
is bigger than the others. One reason may be that the number
of the units in the eye information space is insufficient to
cover a large amount of training data.

(a) Movement of gazing point

0.123 [m]

0.0891 [m
]

(b) Estimated position

Fig. 8. Estimated hand position while the robot randomly moves its gaze
point around the hand: blue lines show trajectory of 300 gaze points (blue
ball) and light blue points shows estimated hand positions.

Xcact−arm
and the actual hand positions while the robot

moves its hand toward the green points in the order are shown
in Fig. 10, where the errors in z direction are bigger than the
others.

B. VIP module

To check the Hebbian learning maturation in the integra-
tion (VIP) space, the averaged variance of the weights of
the connection between the one unit of the integration (VIP)
space and all units of the visual trajectory is also computed in
the same manner shown in the last section. The variances of
2000 steps during learning are shown in Fig. 11. As learning
proceeds, the connection between the units is estimated to be
potentiated.

Additionally, we visualize the level of each weight by color
connected to the ctraj-th unit in the visual trajectory space
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Fig. 9. Histogram of differences between actual and estimated hand
positions for Fig. 8
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Fig. 10. Difference between the actual and estimated hand positions (while
the robot is moving its hand)

while the robot is moving its hand toward the face from the
front. As a result, the robot can roughly estimate the tactile
units that are going to be activated regardless of the position
of the gaze point.

On the other hand, the histogram of the Euclidean distances
of cact−vip and ctac for 200 steps after learning is shown in
Fig. 13. These errors probably happened happen because the
training data of the visual trajectory space, cact−space(t −
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Fig. 11. Variances of weights during Hebbian learning of the association
between visual trajectory and integration spaces



(a) Result1 (b) Result2 (c) Result3

Fig. 12. Values of weights connected to activated unit of visual trajectory
space

2), cact−space(t − 1), and cact−space(t), were influenced by
the errors of the head-centered visual space. Another reason
is suggested that the robot sometimes loses sight of its hand
by moving it outside of the field of view while recording the
trajectory.

Fig. 13. Histogram of differences between the actual activated and estimated
units of tactile space

V. CONCLUSION AND DISCUSSION

The robot acquired the visual-spatial perception by which
the surrounding space is roughly encoded in a head-centered
reference frame. In addition, it can integrate the visual stimuli
coded in this reference frame and tactile stimuli on the face,
and can acquire the representation whose function is similar
to the one of VIP neurons by using SOM and Hebbian
learning hierarchically. In brain science, it has been reported
that the VIP-F4 (the area of arm representation) circuit
in the brain is important for spatial perception [?] around
the body. Neurophysical findings exist in which space is
differentially represented depending on whether the area is
in reach of the hand (peripersonal space) or out of reach of
the hand (extrapersonal space) [?]. These findings support the
possibility that the arm’s proprioceptive sensation contributes
to the acquisition of the head-centered reference frame.

However, since the estimated positions in the head-
centered reference frame are not accurate enough, we are
going to continue to improve the model. For example, not
only by using the proprioceptive sensation, the visual targets
might be useful as a reference point for the acquisition of
the head-centered reference frame if the robot can expect the

change of the visual information (optical flow) in the image
from the eyeball motor information. Moreover, by using ax
similar hierarchical construction,in the future we are planning
to make the robot learn the spatial representation in a body-
centered or global reference frame.
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