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Abstract—One of the most fundamental issues for physical
agents (humans, primates, and robots) in performing various
kinds of tasks is body representation. Especially during tool-use
by monkeys, neurophysiological evidence shows that the repre-
sentation can be dynamically reconstructed by spatio-temporal
integration of different sensor modalities so that it can be adap-
tive to environmental changes [1]. However, to construct such a
representation, an issue to be resolved is how to associate which
information among various sensory data. This paper presents
a method that constructs cross-modal body representation from
vision, touch, and proprioception. Tactile sensation, when the
robot touches something, triggers the construction process of the
visual receptive field for body parts that can be found by visual
attention based on a saliency map and consequently regarded
as the end effector. Simultaneously, proprioceptive information
is associated with this visual receptive field to achieve the cross-
modal body representation. The proposed model is applied to
a real robot and results comparable to the activities of parietal
neurons observed in monkeys are shown.

I. INTRODUCTION

Humans can perform various kinds of tasks through interac-
tion with objects, usually without consciousness of their own
body representation in their brains, based on which humans are
supposed to decide what action to take. Such representation
has been referred to as ”body schema,” an unconscious neural
map in which multi-modal sensory data are unified [2] or
”body image,” an explicit mental representation of the body
and its functions [3] and brain and medical scientists have
investigated the property of such representations. [ex., [4], [5],
and [6]]. Among these studies, Iriki et al. [1] focused on the
neural activity of the intraparietal cortex in the monkey brain
before and after the monkey learned how to manipulate a rake.
They showed that the bimodal neurons responding to both
somatosensory and visual stimulation of the hand were also
activated by the visual stimulation near the rake as if the hand
had extended after training. This neurophysiological evidence
suggests that the body representations in the biological systems
are flexible and acquired by spatio-temporal integration of
the different sensory data. However, when and how such
representation is acquired is left unsolved.

The conventional approaches in robotics specify the body
representation with exact values of parameters such as link
structure and internal/external sensing parameters. Therefore,

this sort of representation is not as adaptive as that of the
biological systems. In cognitive developmental robotics [7],
a number of models for adaptive body representation have
been studied in order not only to understand the acquisition
process of body representation in humans but also to apply
these models to robots that can develop such representation.
Asada et al. [8] proposed that a robot finds its own body in the
visual image based on the change of sensation that correlates
with the motor commands. Yoshikawa et al. [9] proposed a
model in which a robot can detect its own body in the camera
image based on the invariance in multiple sensory data. In
Nabeshima et al.’s model [10], the robot learns the properties
of the robot controller following the synchronization of the
activation of visual and somatic sensations while the robot is
using a tool. Furthermore, Stoytchev [11] proposed the model
that enables a robot to detect its own body in a TV monitor
based on the synchronization of the activation of vision and
proprioception.

In these studies, the synchronization of activations among
different sensing modalities is a central issue in finding
the body parts, and then cross-modal integration of such
data is applied to construct the body representation. These
representations are necessary to perform various kinds of
tasks. However, it does not seem sufficient, especially in the
use of tools, when the location of the end-effector and its
movements are key components for the task. In order to
focus on these components, a visual attention mechanism in
the biological systems seems to work well. Generally, four
processes are fundamental to attention: working memory, top-
down sensitivity control, competitive selection, and automatic
bottom-up filtering for salient stimuli [12]. The first three are
related to voluntary control of attention (top-down) while the
last one is bottom-up. The former supposes that the agent has
already experienced many tasks and therefore, has acquired
more abstracted representation than in the case of the latter.
As the first step towards the adaptive body representation, we
may start from the latter.

This paper presents a method that constructs cross-modal
body representation from vision, touch, and proprioception.
Tactile sensation when a robot touches something triggers
the construction process of the visual receptive field for



body parts that can be found by visual attention based on
a saliency map and consequently regarded as the end-effector.
Simultaneously, proprioceptive information is associated with
this visual receptive field to achieve the cross-modal body
representation. The proposed model is applied to a real robot
and results comparable to the activities of parietal neurons
observed in monkeys are shown. Future issues are discussed
as well.

II. NEUROPHYSIOLOGICAL FINDING

Fig. 1. Parietal cortex in the brain of a monkey (from[13])

Fig. 1 shows the parietal cortex and related areas in the
monkey brain. The parietal cortex (the yellow region) is
reported as being the area where the multi-modal sensations
such as proprioception, vision and auditory are integrated
[14][15]. As mentioned in the previous section, Iriki et al. [16]
recorded the activities of some neurons in that area before
and after Japanese macaques were trained to use a tool. In
that training, the monkeys did not imitate the experimenter’s
behavior but learned how to use the tool abruptly after about
2 weeks. The investigated neurons named ”bimodal neurons”
responded to both somatosensory stimuli at the hand and visual
stimuli. Fig. 2 (a) shows its visual receptive field defined as
the region where the neurons are activated with the visual
pointer. After the monkeys became able to reach the target
(food) with the tool through the training, the bimodal neurons
also responded to the visual stimuli near the tool as shown in
Fig. 2 (b).

Furthermore, they also investigated the activities of these
neurons while the monkeys were using the tool through a TV-
monitor [17] with several conditions to check how adaptive the
visual receptive field is. It is easily and dynamically modified
according to the change of its visual sensation and surprisingly
the monkey’s intention of using the tool as well. These results
suggest that monkeys can dynamically change their visual
receptive field as if the tool became a part of their own bodies
during tool use. Through these experiences, the monkeys are
expected to have a category of “tools” and to regard the end
effectors (hands) as tools vice versa. A big mystery from the
viewpoint of cognitive developmental robotics is how a robot
can acquire such adaptive representation expected to develop
higher and more abstracted representation.

(a) Before tool-use (b) After tool-use

Fig. 2. Changes in bimodal visual receptive field(from[17])

III. BASIC IDEA FOR A SYNTHETIC MODEL

As the first step toward solving this big mystery, let us
consider the following points

1) We suppose that the visual attention is a key issue to
achieving the visual receptive field not simply because
the visual attention mechanism can focus on the salient
features (bottom-up flow) but also because such a field
can be activated when attention is directed to it in some
way (top-down flow), like the activation of the monkey’s
visual receptive field by the visual pointer.

2) Considering the acquisition of tool category in the
future, it is important to start with finding the end
effector not supposing it can be easily found by its
salient visual feature such as color [10] but expecting
that it is constructed through the learning process.

3) To acquire the cross-modal body representation, tactile
sensation is essential. In our model, we utilize the tactile
sensation to trigger the process, that is, when it touches
something, a robot associates the salient visual features
with the proprioceptive data.

IV. THE MODEL FOR BODY REPRESENTATION
BASED ON VISUAL ATTENTION

Considering the basic idea mentioned above, a synthetic
model for body representation is proposed. An overview of
the whole system is shown in Fig. 3 where three modules
are involved. The arm posture module corresponds to the
proprioception, representing various kinds of postures in terms
of joint angles that are collected and structured as an SOM
(self-organizing map). The attention module detects the salient
features in the camera image as the candidates for attention
point based on a saliency map algorithm [18] in every step.
The integration module associates the arm posture with the
visual attention point by Hebb Learning when the robot detects
the tactile sensation by hitting a target with its hand or a tool.
This module can be regarded as a model of the neuron in the
parietal cortex. Details of each module are given next.

A. Robot Model

In order to validate the model, the proposed system is
applied to a humanoid robot, CB2 [19] (Fig. 4). This robot
was developed by the JST ERATO Asada Project as a research
platform for cognitive developmental robotics. It has soft
skin and flexible joints (51 pneumatic actuators). Under the



Fig. 3. Overview of the proposed system

soft skin, it has about 200 tactile sensors to achieve tactile
perception. It is about 130 [cm] tall and weights about 33
[kg].

Fig. 4. Child-robot with Biomimetic Body for cognitive developmental
robotics: CB2

B. Arm posture module

The robot moves its hand toward random positions on the
table. The six joint angles of the left arm are recorded and
used for the construction of an SOM as training data. SOM is
a kind of artificial neural network [20]. It describes a mapping
from a higher dimensional input space to a lower dimensional
(typically two dimensional) map space. In this experiment, the
dimension of the SOM is two and the number of units is 8×8.
Thus, the representative vector of the i-th unit is

Θi = (θi
1, θ

i
2, ..., θ

i
n), (1)

where n is the number of joint angles, which is six here.
While the robot is probing on the table, the activity level

of the i-th unit in the arm posture map is computed with the
actual values of the joint angles of the arm, Θ, as described
below

aarm
i = e−βd2

i (2)

where,

di = ‖Θi − Θc‖, (3)
c = arg min

i
‖Θ − Θi‖. (4)

In this experiment, β is 100.

C. Visual attention module
While probing on the table, the robot pays its attention to the

point detected in this visual attention module at every step. In
order to model the visual attention, the saliency map algorithm
is adopted. The saliency map is proposed based on biologically
plausible architecture by Itti et al. [18]. The map is constructed
by combining several kinds of features in the visual image.

In our experiment, the camera image size is 320×240, and
a pyramid structure is adopted for quick localization of image
features. The scale parameter σ = [0, 1, ..., 8]. The following
visual features are used to construct the saliency map.

• Intensity: summation of rgb components
• Color: rgb components and other color features from rgb

components
• Flicker: simple temporal difference (subtraction between

consecutive frames)
• Gabor: the value of Gabor filters with four directions
• Motion: normal flow vectors of edge segments
The computation of these features is based on the method

by Itti et al. [18].
Figs. 5 (a)-(e) show these visual features for the input image

(Fig. 5 (f)) when the robot touches and pushes the object on the
table. Fig. 5 (g) indicates the final saliency map that shows
the moving hand and pushed object are evaluated as highly
salient.

(a) Intensity (b) Color (c) Flicker (d) Gabor (e) Motion

(f) Input image (g) Output image (h) Attention map

Fig. 5. Visual attention module

The saliency map is divided into 10× 10 units. The center
coordinate of the j-th unit is defined as xj and the sum



of salient feature values in the unit Sj is calculated as the
represented saliency value of the area. Then the attention unit
is selected from the points whose Sj is over the threshold D.
D is selected randomly from 0 to 1. Finally, the attention map
is constructed as shown in Fig.5 (h).

The k-th unit of activation level of the attention map is
calculated as follows

aattention
k = e−γs2

k , (5)
sk = ‖xk − xc‖, (6)

where xc is the ID of the activated unit on the attention map.

D. Integration module

The integration module has 10 × 10 units, each of which
receives the signal from the units of the attention map and the
arm posture map via the connection weight matrices, wA and
wB , respectively. wA is fixed so that the activation level of the
attention map is directly conveyed to the corresponding unit
of the integration module

wA
jk =

{
1 (if j = k)
0 else

. (7)

On the other hand, the arm posture module and integration
module are associated based on the Hebbian learning algo-
rithm when the robot detects the tactile activation with its
own hand. The weight between a unit of the arm posture map
and a unit of the integration map increases if the activation
levels of units are high and vice versa.The connection weights
between two maps, wB

ik, are updated as follows,

∆wB
ik = εaarm

i aintegrate
k , (8)

wB
ik(t + 1) = wB

ik(t) + ∆wB
ik, (9)

wB
ik(t + 1) ← wB

ik(t + 1)∑Na

k=0 wB
ik(t + 1)

, (10)

where Na is the number of units of the attention map. In this
experiment, Na is 100 and ε is 0.05. aintegrate

k is the activation
level of the unit of the integration module. In learning phase,

aintegrate
k = aattention

k . (11)

The initial values of wik are 0.5s, which means that one
posture is associated with all units of the integration module
at the same level.

V. EXPERIMENTAL RESULT

A. Setting of the experiment

The proposed model was applied to a real robot, CB2, with
an experimental environment similar to that with macaque
monkey by Iriki et al. [1] as shown in Fig. 2.

The robot is placed in front of a black table. The robot
probes with its own left hand or a tool on the table as shown in
Fig. 6. The target object colored orange is positioned randomly
every time the robot touches the object with its own body
(including a tool). During learning, the posture of the robot is
fixed except for the probing hand and the eyes of the robot

(from which the camera images are captured). Although the
robot has many tactile sensors throughout is body, the density
of the tactile sensors in the hand is not enough to detect
the touched sense of the object. Thus, the trigger for the
learning is given by the experimenter when she observes that
the robot hand touches the object. For the tool use case, the
learning trigger is given when the experimenter observes the
tool touching the object, expecting that the tactile sensing is
affected by the contact between the tool and the object.

(a) With hand (b) With tool

Fig. 6. Robot probes on the table with the hand and a tool

B. Evaluation of the learning process

In order to evaluate the learning maturation of Hebbian
learning in the integration module, the averaged variance of
the weights between one unit of the arm posture map and
all units of the integration map is calculated. The averaged
position on the integration map, r̄i, connected from the i-th
unit of the arm posture map is calculated as

r̄i =
∑Na

k=1 wikrk∑Na

k=1 wik

, (12)

where rk denotes the position vector of the k-th unit on the
integration map. Furthermore, the variance of the connection
weights from the i-th unit of the arm posture map, r̂i, is
calculated as

(r̂i)2 =
∑Na

k=1 wik‖rk − r̄i
k‖2∑Na

k=1 wik

. (13)

The time courses of the variance for one unit of the arm
posture map with and without the tool are shown in Fig. 7. As
the learning proceeds, each variance becomes smaller and the
connection weights between the units converge. The variance
curve for the hand with the tool goes up and down a little bit
after 30 steps. This may be because the posture of the robot
(and so the camera position) slightly changes from the initial
position.

C. The connection weights

We examine the connection weights between one unit of
the arm posture map and every unit of the integration map.
In Figs. 8, the level of connection weights that connect from
one unit of the arm posture map visualized by color under
each condition is superimposed on the robot camera view.
The redder the color, the higher the connection weight is. The
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Fig. 7. Variances of connection weights as Hebbian learning proceeds

imposed camera image is captured when the robot assumes
the posture corresponding to the unit of the arm posture map.
Because the attention module is directly connected to the
integration module in this model as expressed in Eq. 7 the
relation between the arm posture map and the attention map
can be directly compared in this figure. Fig. 8 (a) shows
that the connection weights converge most strongly at the
area around the end effector (the hand of the robot). This
implies that the hand area is the most salient for this robot
when it touches the object. On the other hand, contrary to the
expectation, the upper-right area is also weighted high. When
the robot touches the object, the robot posture sometimes
changes slightly. This causes the motion flow in the camera
image and makes the saliency of the corner of the table same
level as that of the hand and the object. Fig. 8 (b) shows
that the connection weights are extended to the tool area.
These results are comparable to those of the experiments with
macaque monkeys as shown in Fig. 2. In Iriki’s experiments,
the neurons expanded their receptive fields after the training.
On the other hand, we deal with the hand-use case and the
tool-use case separately. However the same results in computer
simulations were obtained from the case the robot used tool
after the hand-use case.

D. The activation of the bimodal neuron

The connection weights shown in Fig. 8 are regarded as
the visual receptive field of the neurons of the parietal cortex
observed in macaque monkeys. After the learning of the
connection weights, it is expected that the robot can evaluate
whether the attended point belongs to (or is near) its body or
not by the activation level of the unit of the integration module.
In order to show this, we conduct an experiment similar to that
of Iriki et al. [1]. They investigate the visual receptive field
by recording the activation level of the parietal neuron when
various positions in front of the monkey are pointed at with a
laser pointer. In the same manner, the light of the laser pointer
is presented at in the various points in front of the robot in a

(a) With hand

(b) With tool

Fig. 8. The level of the connection weights

dark room. This is very effective for controlling the attention
point of the robot because the bright light of the laser in the
dark is extremely salient in the robot view.

In this inspection phase, the activation level of the unit of
the integration module, aintegrate

k , is calculated as follows:

aintegrate
k = (

∑
j

wA
jkaattention

j )(
∑

i

wB
ikaarm

i ) (14)

= aattention
k (

∑
i

wB
ikaarm

i ). (15)

This equation can be interpreted as meaning that the inte-
gration unit compares the current attention point, aattention

j ,
with the remembered posture of the body,

∑
i wB

ikaarm
i . The

activation level is conveyed to the experimenter by the alert
sound that is played when the activation level of the unit
exceeds some threshold.

Fig. 9 shows the experimental result. The red points indicate
the laser point positions pointed at by the experimenter, and
the graph shows the alert sound level corresponding to the
activation level of the unit of the integration module. This
result shows that, when the robot attends to the area that
belongs to or near its body, the integration unit is activated in
the same manner observed in the experiments with macaque
monkeys.



Fig. 9. Activation level of bimodal neuron depending on the laser pointer
positions

VI. DISCUSSION AND FUTURE ISSUES

The proposed model enabled the robot to acquire its body
part (supposed to be its end effector) representation by as-
sociating the proprioceptive and visual information (both its
hand and a tool) using the visual attention model based on
a saliency map. We use tactile sensation to trigger learning.
Without tactile sensation, the relationship between visual and
proprioceptive information might be acquired, but the learning
would be quite inefficient and inaccurate because tactile sen-
sation makes the possibilities of wrong association much less
and the boundary of the visual and proprioceptive information
clearer. The changes in tactile information is one of the key
to construct the body representations. When the robot pays its
attention to a point on the table after learning, it can judge
whether the attention point is near its body or not by finding
the difference in position associated with the posture. On the
other hand, the robot activates the units on the arm posture
map when the robot detects the visual stimulus of a red point
on the table as shown in Fig. 9. This may imply that the
acquired representation is one of the foundations of ”body
image” that is recalled by its conscious behavior (attention).
We also suggest that the representation in Figs. 8 can be stated
as the visual receptive field of the neuron in the parietal cortex
area in Fig. 2.

In our model, the attention mechanism has an important role
in acquiring the body representation as a bottom-up mecha-
nism. Although we have not examined the recalling process
exactly, another attention mechanism to trigger the recalling
process should be considered as a top-down mechanism. For
example, when the robot encounters a novel tool, we would
like it to be able to shift its attention to the image features that
are similar to those of the end effectors of its body parts, so
that the robot can manipulate the tool. This can be a sort of
so-called affordance. If the visual background is complex or
changing, the integration would not accomplished correctly. To
solve this, a top-down mechanism (such as affordance) would
be useful. And the visual field of the robot must be fixed in our

model. This will be solved if the robot acquires the coordinate
system [21].

In addition to the above issues, other future work remain,
such as introduction of a reward system for learning how to
use a tool, formalization of affordance consistent with the
proposed model, and temporal contingency to more adaptive
body detection in the visual images.
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