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Abstract— In performing various kinds of tasks, body rep-
resentation is one of the most fundamental issues for physical
agents (humans, primates, and robots). Especially during tool-
use by Japanese macaque monkeys, neurophysiological evidence
shows that the representation can be dynamically reconstructed
by spatio-temporal integration of different sensor modalities so
that it can be adaptive to environmental changes [1]. However,
to construct such a representation, an issue to be solved is how
to associate which information among various sensory data.
This paper presents a method that constructs cross-modal body
representation from vision, touch, and proprioception. When
the robot touches something, the activation of tactile sense
triggers the construction process of the visual receptive field
for body parts that can be found by visual attention based on
saliency map and consequently regarded as the end effector.
Simultaneously, proprioceptive information is associated with
this visual receptive field to construct the cross-modal body
representation. The computer simulation results are compara-
ble to the activities of parietal neurons found in the Japanese
macaque monkeys. Various conditions are also investigated so
that what kind of information is important to generate the same
results as findings in neurophysiology.

I. INTRODUCTION

Humans can perform various kinds of tasks through inter-
action with objects, usually without consciousness of their
own body representation in their brains. Such representation
has been referred to as ”body schema” [2] or ”body image”
[3], and brain and medical scientists have investigated the
property of such representations. [ex., [4], [5], and [6]].
Among these studies, Iriki et al. [1] focused on the neural
activity of the intraparietal cortex in the Japanese macaque
monkey brain before and after the monkey learned how to
manipulate a rake. They showed that the bimodal neurons
responding to both somatosensory and visual stimulation of
the hand were also activated by the visual stimulation near
the rake as if the hand had extended after training. This
neurophysiological evidence suggests that the body repre-
sentations in the biological systems are flexible and acquired
by spatio-temporal integration of the different sensory data.
However, when and how such representation is acquired is
left unsolved.

The conventional approaches in robotics specify the body
representation with exact values of parameters such as link
structure and internal/external sensing parameters. Therefore,
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this sort of representation is not as adaptive as that of the
biological systems. In cognitive developmental robotics [7],
a number of models for adaptive body representation have
been studied in order not only to understand the acquisition
process of body representation in humans but also to apply
these models to robots that can develop such representation.
[ex., [8], [9], [10], and [11]]. In these studies, the synchro-
nization of activations among different sensing modalities is
a central issue in finding the body parts, and then cross-modal
integration of such data is applied to construct the body rep-
resentation. However, it does not seem sufficient, especially
in the use of tools, when the location of the end-effector and
its movements are key components for the task. In order to
focus on these components, a visual attention mechanism in
the biological systems seems to work well. Generally, four
processes are fundamental to attention: working memory,
top-down sensitivity control, competitive selection, and au-
tomatic bottom-up filtering for salient stimuli [12]. The first
three are related to voluntary control of attention (top-down)
while the last one is bottom-up. The former supposes that
the agent has already experienced many tasks and therefore,
has acquired more abstracted representation than in the case
of the latter. As the first step towards the adaptive body
representation, we start from latter.

This paper presents a method that constructs cross-modal
body representation from vision, touch, and proprioception.
When the robot touches something, the activation of tactile
sense triggers the construction process of the visual receptive
field for body parts that can be found by visual attention
based on a saliency map and consequently regarded as the
end-effector. Simultaneously, proprioceptive information is
associated with this visual receptive field to achieve the
cross-modal body representation. The computer simulation
results are comparable to the activities of parietal neurons
found in the Japanese macaque monkeys. Various conditions
are also investigated so that what kind of information is
important to generate the same results as findings in neu-
rophysiology.

II. NEUROPHYSIOLOGICAL FINDING

Iriki et al. [1] recorded the activities of some neurons
in the intraparietal cortex before and after the Japanese
macaque monkeys were trained to use a tool. In that training,
the monkeys did not imitate experimenter’s behavior but
learned how to use a tool abruptly after about 2 weeks. The
investigated neurons named ”bimodal neurons” respond to
both somatosensory stimuli at the hand and visual stimuli.
Fig. 1 (a) shows its visual receptive field defined as the region



(a) Before tool-use (a) After tool-use

Fig. 1. Changes in bimodal receptive field properties (from [13])

where the neurons are activated with the visual pointer. After
the monkeys became able to reach the target (food) with it
through the training, bimodal neurons also responded to the
visual stimuli near the tool as shown in Fig. 1 (b).

These results suggest that the monkeys can dynamically
change their visual receptive field as if the tool became a
part of their own bodies during tool use. Through these
experiences, the monkeys are expected to have a category
of “tools” and to regard the end effectors (hands) as tools
vice versa. A big mystery from a viewpoint of cognitive
developmental robotics is how a robot can acquire such
adaptive representations that is expected to be developed to
higher and more abstracted ones.

III. BASIC IDEA FOR A SYNTHETIC MODEL

As the first step towards the big mystery, let us consider
the following points:

1) We suppose that the visual attention is a key issue to
achieving the visual receptive field not simply because
the visual attention mechanism can focus on the salient
features (bottom-up flow) but also because such a field
can be activated when attention is directed to it in
some way (top-down flow), like the activation of the
Japanese macaque monkey’s visual receptive field by
the visual pointer.

2) Considering the acquisition of tool category in the
future, it is important to start with finding the end
effector not supposing it can be easily found by its
salient visual feature such as color [10] but expecting
that it is constructed through the learning process.

3) To acquire the cross-modal body representation, tactile
sensation is essential. In our model, we utilize the
tactile sensation to trigger the process, that is, when it
touches something, a robot associates the visual salient
features with the proprioceptive data.

IV. THE MODEL FOR BODY REPRESENTATION
BASED ON VISUAL ATTENTION

Considering the basic idea mentioned above, the synthetic
model for body representation is proposed. An overview of
the whole system is shown in Fig. 2 where three modules
are involved. The arm posture module corresponds to the
proprioception, representing various kinds of postures in
terms of joint angels that are collected and structured as SOM
(self organizing map) [15]. The attention module detects the
salient features in the camera image as the candidates for
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Fig. 2. An overview of the proposed model

attention point based on saliency map algorithm [14] in every
step. The integration module associates the arm posture with
the visual attention point by Hebb Learning when the robot
detects the tactile sensation by hitting a target with its hand
or a tool. This module can be regarded as a model of the
neuron in the parietal cortex. Details of each module are
given next.

A. Robot Model

Fig. 3. Robot specifications

(a) With a hand (b) With a tool

Fig. 4. The robot probes on the table with the hand and a tool

In order to validate the model, computer simulations are
conducted with the dynamics simulator. The robot model
used in the experiment and its specifications are shown in
Fig. 3. Although it has both arm each of which has five de-
grees of freedom and binocular vision system, we utilize the



left arm and the central point between two eyes (monocular
vision system) for the simplicity of the experiments. The
robot is placed in front of the table, 0.2[m] high and 0.5[m]
wide. While learning, it probes with its own left hand or tool
on the table as shown in Fig. 4 and gazes at a fixation point
(no change) on the table. There is a target at the position
selected randomly and it is replaced to the different one when
the robot hits it with its own body (including a tool).

B. Arm posture module

The robot moves its hand toward random positions on the
table. The five joint angles of the left arm (which are colored
red in Fig. 3) are recorded and used for the construction of
SOM as training data. The dimension of SOM is two and the
number of the units is 8× 8. Thus, the representative vector
of the i-th unit is

Θi = (θi
1, θ

i
2, ..., θ

i
n), (1)

where n is the number of joint angles, which is five here.
This learned map of the arm posture is shown in Fig. 5.

Fig. 5. Arm posture map

C. Visual attention module

While probing on the table, the robot pays its attention to
the point detected in this visual attention module at every
step. In order to model the visual attention, the saliency map
algorithm is adopted. The saliency map is proposed based
on biologically plausible architecture by Itti et al. [14]. The
map is constructed by combining several kinds of features
in the visual image.

In our experiment, the camera image size is 512 × 512,
and a pyramid structure is adopted for quick localization of
image features. The scale parameter σ = [0, 1, ..., 8]. The
following visual features are used to construct the saliency
map.

• Intensity: summation of rgb components
• Color: rgb components and other color features from

rgb components
• Flicker: simple temporal difference (subtraction be-

tween consecutive frames )
• Gabor: the value of Gabor filters with four directions
• Flow: normal flow vectors of edge segments

The computation of these features are based on the method
by Itti et al. [14]. Flicker and flow are motion saliency.

Figs. 6 (a)-(e) show these visual features for the input
image (Fig. 6 (f)) while the robot is probing on the table.
Fig.6 (g) indicates the final saliency map.

(a) Intensity (b) Color (c) Flicker (d) Gabor (e) Flow

(f) Input image (g) Output image (h) Attention map

Fig. 6. Visual attention module

The saliency map is divided into 10×10 units. The center
coordinate of the j-th unit is defined as xj and the sum of
salient feature values in the unit Sunit

j is calculated as the
represented saliency value of the area. Then the attention unit
is selected from the points whose Sunit

j is over the threshold
D. D is selected randomly from 0 to 1. Finally, the attention
map is constructed as shown in Fig. 6 (h).

D. Integration module

1) Calculation of the activation level: Before the inte-
gration, we define the activation level of arm posture map
and attention map. While the robot is probing on the table,
the activity level of the i-th unit of the arm posture map is
computed with the actual values of the joint angles of the
arm, Θ, as described below,

aarm
i = e−βd2

i . (2)

where,

di = ‖Θi − Θc‖, (3)
c = arg min

i
‖Θ − Θi‖. (4)

In this experiment, β = 100.
In the same manner, the k-th unit of activation level of the

attention map is calculated as follows.

aattention
k = e−γs2

k . (5)

sk = ‖xk − xc‖, (6)

where xc is the ID of the activated unit of the attention map.
2) Association: The integration module has 10×10 units,

each of which receives the signal from the units of the
attention map and the arm posture map via the connection
weight matrices, wA and wB , respectively. wA is fixed so



that the activation level of the attention map is directly
conveyed to the corresponding unit of the integration module

wA
jk =

{
1 (if j = k)
0 else

. (7)

On the other hand, the arm posture module and integration
module are associated based on the Hebbian learning algo-
rithm when the robot detects the tactile activation with its
own hand. The connection weights between two maps, wB

ik,
are updated as follows,

∆wB
ik = εaarm

i aintegrate
k , (8)

wB
ik(t + 1) = wB

ik(t) + ∆wB
ik, (9)

wB
ik(t + 1) ← wB

ik(t + 1)∑Na

k=0 wB
ik(t + 1)

, (10)

where Na is the number of units of the attention map. In
this experiment, Na is 100 and ε is 0.05. aintegrate

k is the
activation level of the unit of the integration module. In
learning phase,

aintegrate
k = aattention

k . (11)

The initial values of wB
ik are 0.5s, which means that one

posture is associated with all units of the integration module
at the same level.

V. EXPERIMENTAL RESULTS

The proposed model described above is applied to the
simulation model under some different conditions as shown
in Table 1.

A. The effect of the visual features

The cases 1-6 are arranged to examine what information
is effective for the construction of the body representation.

1) Evaluation of the learning process: In order to evaluate
the learning maturation of Hebbian learning in the integration
module, the averaged variance of the weights between one
unit of the arm posture map and all units of the integration
map is calculated. At the beginning, one unit of the arm
posture map is associated with all units of the integration
module, therefore the variance at this stage is very large.
As the learning process proceeds the connections between
them are pruned, and therefore the variance converge to a
small value. The averaged position on the integration map,
r̄i, connected from the i-th unit of the arm posture map is
calculated as

r̄i =
∑Na

k=1 wikrk∑Na

k=1 wik

, (12)

where rk denotes the position vector of the k-th unit of the
integration map. Furthermore, the variance of the connection
weights from the i-th unit of the arm posture map, r̂i, is
calculated as

(r̂i)2 =
∑Na

k=1 wik‖rk − r̄i
k‖2∑Na

k=1 wik

. (13)

Then, finally the connection-weight-evaluation is performed
with

R =
∑Nb

i=1 r̂i

Nb
, (14)

where Nb is the number of the units of arm posture map
and is 64. The result during learning is shown in Fig. 7.
As the learning proceeds, each variance converges and the
connection between the units seems to be potentiated. In
case 6, when the robot uses a tool, the change of the value
is smaller because there are more hitting points that cause
the tactile activation of its own hand.

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Learning step (the number of the tactile sensory experience)

 V
ar

ia
n
ce

Fig. 7. The variance as Hebbian learning proceeds

2) The connection weights: We examine the connection
weights between one unit of the arm posture map and every
unit of integration map. In Figs. 8, we visualize the level
of connection weights by color that connect from one unit
of the arm posture map (specified by a red circle in Fig.
5) under each condition, superimposed on the robot camera
view. Because the attention module is directly connected to
the integration module in this model as expressed in Eq. 7
the relation between the arm posture map and the attention
map can be directly compared in these figures.

Fig. 8 (a) shows case 1, the standard condition. This
indicates that the connection weights converge most strongly
at the area around the hand. This result is comparable to the
visual receptive field of the bimodal neurons in the Japanese
macaque monkeys shown in Fig. 1 (a).

Fig. 8 (b) shows case 2 where the salient level around the
target is different. Since the saliency of the target is lower
in case 2 than that in case 1, the frequency how often the
robot pays its attention to the target around the hand is lower
in case 2. Thus the connection weights do not spread as
much as case 1. This result may indicate that the reason why



TABLE I
EXPERIMENTAL CONDITION

Case End effector Color of the target number of the target Saliency Timing of the integration
1 Hand Black 1 all elements Detection of the tactile sensation
2 Hand Same with a table 1 all elements Detection of the tactile sensation
3 Hand Black 1 only motion Detection of the tactile sensation
4 Hand Black 1 without motion Detection of the tactile sensation
5 Hand Black 3 all elements Detection of the tactile sensation
6 Tool Black 1 all elements Detection of the tactile sensation
7 Tool Black 1 all elements No relationship with tactile sensation
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(e) Case 5 (f) Case 6

Fig. 8. The levels of weights

the actual receptive field spreads around the hand might be
because of using salient target when the body representation
is acquired. Figs. 8 (c) and (d) show cases 3 (only motion
saliency) and 4 (without motion saliency) where the motion
saliency is treated differently. The former indicates that the
units of the arm posture map connect not only the units of the
hand but also the ones around the arm. The result suggests
that it is difficult to detect the appropriate visual information
of its own end effector only with the temporal change in the
visual image. Fig. 8 (e) shows case 5 where the number of the
target is three. The locations of two of three targets (shown
in (e)) are fixed and the remaining one target is randomly

located. In this case, the wrong connection happens because
the system also detects the targets as well as the end effector.
Figs. 8 (a) and (f) indicate the difference in tool use. When
the robot uses a tool, the connection distribution is spread
out over the tool area. These results may correspond to those
of the experiments with the Japanese macaque monkeys as
shown in Fig. 1 (b).

3) The activation of the bimodal neuron: The connec-
tion weights shown in Fig. 8 are regarded as the visual
receptive field of the neurons of the parietal cortex observed
in the Japanese macaque monkeys. After the learning of
the connection weights, it is expected that the robot can
decide whether the attended point belongs to (or is near)
its body or not by the activation level of the unit of the
integration module. In order to show this, we conduct an
experiment similar to that of Iriki et al. [1]. They investigate
the visual receptive field by recording the activation level
of the parietal neuron when various positions in front of
the Japanese macaque monkey are pointed at with a laser
pointer. In the same manner, the light points are presented
in the various points in front of the robot in the dark. In
this inspection phase, the activation level of the unit of the
integration module, aintegrate

k , is calculated as follows:

aintegrate
k = (

∑
j

wA
jkaattention

j )(
∑

i

wB
ikaarm

i ) (15)

= aattention
k (

∑
i

wB
ikaarm

i ). (16)

This equation can be interpreted as meaning that the inte-
gration unit compares the current attention point, aattention

j ,
with the remembered posture of the body,

∑
i wB

ikaarm
i .

Fig. 9 shows the experimental result. This result shows
that, when the robot attends to the area that belongs to
or near its body, the integration unit is activated in the
same manner observed in the experiments with the Japanese
macaque monkeys.

B. The effect of the tactile sensation

We use tactile sensation to trigger learning. The case 7 is
arranged to examine the effect of using tactile sensation as
the trigger of the integration. In this case, the arm posture
module and integration one are associated regardless of the
tactile sensation. The learned connection weights are shown
in Fig. 10. As shown in Fig. 10 (b), without tactile sensation,
the relationship between visual and proprioceptive informa-
tion is acquired, but the connection weights are not extended



Fig. 9. Activation level of bimodal neuron depending on the laser pointer
positions
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Fig. 10. The levels of weights:cases 6 and 7

to the tool. This result conflicts with the experiments with
the Japanese macaque monkeys. Thus tactile sensation would
be necessary to acquire the body representation.

VI. DISCUSSION

The proposed model enabled the robot to acquire its
body part (supposed to be its end effector) representation by
associating the proprioceptive and visual information (both
its hand and a tool) using the visual attention model based on
a saliency map. When the robot pays its attention to a point
on the table after learning, it can judge whether the attention
point is near its body or not by finding the difference in
position associated with the posture. On the other hand,
the robot activates the units of the arm posture map when
the robot detects the visual stimulus of a red point on the
table as shown in Fig. 9. This may imply that the acquired
representation is one of the foundations of ”body image”
that is recalled by its conscious behavior (attention). We also
suggest that the representation in Fig. 8 can be stated as the
visual receptive field of the neurons found in the Japanese
macaque monkeys in Fig. 1.

In our model, the attention mechanism has an important
role in acquiring the body representation as a bottom-up
mechanism. Although we have not examined the recalling
process exactly, another attention mechanism to trigger the
recalling process should be considered as a top-down mech-
anism. For example, when the robot encounters a novel tool,

we would like it to be able to shift its attention to the image
features that are similar to those of the end effectors of
its body parts, so that the robot can manipulate the tool.
This can be a sort of so-called affordance. If the visual
background is complex or changing, the integration would
not be accomplished correctly. To solve this, a top-down
mechanism (such as affordance) would be useful. Here the
visual field of the robot must be fixed in our model. This
will be solved if the robot learns the association of eyeball
angles and visual information [16].

In addition to the above issues, other future works remain,
such as introduction of a reward system for learning how to
use a tool, formalization of affordance consistent with the
proposed model, and temporal contingency to more adaptive
body detection in the visual images.
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