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Abstract—Mother-infant vocal communication is a sort of mys-
tery of human cognitive development since they can communicate
although their body structures and therefore their utterable areas
are different. This paper proposes a method that aids unconscious
guidance in mutual imitation for infant development based on a
biasing element with two different kinds of modules. The first is
based on the normal magnet effect in perceiving heard vocal
sounds as the listener’s own vowels (perceptual magnet) and
also includes another magnet effect for imitating vocal sounds
that resemble the imitator’s vowels (articulatory magnet). The
second is based on what we call “auto mirroring bias,” by
which the heard vowel is much closer to the expected vowel
because the other’s utterance is an imitation of the listener’s
own utterance. Computer simulation results of mother-infant
interaction show the validity of the proposed bias. Finally future
issues are discussed.

I. INTRODUCTION

How can we build robots that can communicate naturally
with humans? A bottleneck in such development exists be-
cause their body structures differ from humans. On the other
hand, the body structure of human infants is immature and not
the same as their caregivers, and yet they can acquire similar
patterns of communication behavior as their caregivers through
interaction with them, e.g., mutual imitation. Modeling the
developmental process of infants under such interaction with
their caregivers is a formidable challenge. We expect this
approach would contribute to building a robot that can acquire
human-like communication behaviors through interaction with
humans as well as understanding of the cognitive development
process of human infants.

Infant studies report that maternal imitation effectively re-
inforces infant vocalization [1], and infant speech-like cooing
tends to elicit utterances from caregivers [2]. Thus moth-
ers/primary caregivers and infants tend to imitate one another’s
utterances. From the perspective that infants may acquire
clear vowels through such mutual imitation, Miura et al.
experimented on human-robot mutual imitation of vowels
and showed that robots which imitated humans voices could
enunciate clearer vowels by continuing to adapt their voices
to match the caregiver [3]. This implies that human imitation
voices include reproduction errors that consequently guide the
direction of voices toward clearer ones. Miura et al. argued that

such maternal guidance resulted from the perceptual magnet
effect [4] in which a person mistakenly perceives a sound as
being closer to either of her/his own phoneme prototypes than
it actually is. The previous work, however, have not considered
other causes from the constraints that exist in the human
imitation system. Moreover, they gave the robot approximate
knowledge about the correspondence relations between human
and robot utterable vowels. However, the robot should acquire
such knowledge about the correspondence relation through
interaction with humans because in most cases providing
robots with accurate knowledge about the correspondence
relation between humans and robot behavior is difficult.

Keeping these points in mind, we propose a computational
model of unconscious guidance in mutual imitation that con-
siders three biasing elements of human imitation. The first
is the perceptual magnet effect, as argued in previous work.
We call the second an articulatory magnet effect: person’s
articulation tends to be attracted so that the articulated voice
becomes colser to the ones they usualy generate than the one
they intended to generate. We believe that both these magnet
effects bias the imitation process in the same direction to
the person’s own primitive voice. Therefore, we model these
magnets as a biasing mechanism that we call “sensorimotor
magnets” by introducing shrinking properties to a transfer
function between the vowel regions of both agents in mutual
imitation. Furthermore, we consider a biasing element by anal-
ogy with a priming effect, which is a phenomenon that human
perception is affected by a prime stimulus. We conjecture that
a listener’s prior utterance works as a prime stimulus in a
mutual imitation situation, suggesting that a person tends to
perceive another’s utterance as being closer to an expected
imitation sound of its own prior utterance than actual. This is
the third biasing element that we call “auto mirroring bias.”

The rest of this paper is structured as follows: we first
propose an imitation mechanism that considers the auto mir-
roring bias and sensorimotor magnets as well as a learning
method by mutual imitation with a caregiver. Then simulation
results about mother-infant vowel mutual imitation illustrate
how sensorimotor magnets help learners form smaller clusters
of vowels and how the auto mirroring bias guides these clusters



to become clear vowels. Finally, we discuss future issues and
conclude the paper.

II. IMITATION MECHANISM CONSIDERING BIASING
ELEMENTS

Suppose that two persons alternately iterate and imitate
each other’s voices and that the sound can be denoted by an
Ns dimensional vector while the articulation to produce the
imitation sound can be denoted by an Na dimensional vector.

Figure 1 illustrates the imitation process by the proposed
mechanism: at the t-th step of mutual imitation, it listens
to the other’s voice s(t) ∈ <Ns and imitates s(t) by an
articulation a(t) ∈ <Na . It consists of three functions: an
auto mirroring biasing module that biases input sounds, a
sensorimotor magnet module that produces imitated sound
from biased input, and a vowel region mapping module
that calculates what we call auto mirroring anticipation from
one’s last imitation utterance. “Auto mirroring anticipation”
is defined as the other person’s expected imitation voice of
her own present utterance. In the t-th step of the imitation
trials, the other’s heard voice s(t) ∈ <Ns is input to auto
mirroring bias module b : <Ns → <Ns , which attracts s(t)
to auto mirroring anticipation sg(t − 1) ∈ <Ns . This biased
sound sb(t) is input to the sensorimotor magnet module and
converted to articulation a(t) by function f : <Ns → <Na .
a(t) is an imitation utterance of s(t). Moreover, imitation
utterance a(t) is input to the vowel region mapping module
and converted to auto mirroring anticipation sg(t) by function
g : <Na → <Ns . Auto mirroring anticipation sg(t) is input to
the auto mirroring bias module as a biasing element for the
other’s next voice s(t + 1).

Fig. 1. Proposed imitation mechanism considering biasing elements

A. Auto mirroring bias module

The other’s heard voice s(t) is biased to auto mirroring
anticipation sg(t − 1) and converted to sb(t) that is given by

sb(t) = b(s(t), sg(t − 1); α) = s(t) + α(sg(t − 1) − s(t))
(0.0 ≤ α ≤ 1.0), (1)

where α is a parameter that determines the strength of the
auto mirroring bias. When α is close to 0, output sb(t) nearly
equals original input s(t) since the auto mirroring bias is
weak. Conversely, when α is close to 1, output sb(t) is almost
attracted to auto mirroring anticipation sg(t − 1).

B. Sensorimotor magnet module

Since human adults, infants, and robots do not have com-
pletely identical sensorimotor systems, they cannot perfectly
reproduce the other’s utterances. Therefore the other’s voice
needs to be converted into the listener’s own utterable vowel
region. We use the Normalized Gaussian network (NGnet)
to map the other’s utterable vowel region onto the listener’s
own utterable vowel region. NGnet is a modular probabilistic
regression function that maps Ns-dimensional input space
onto Na-dimensional output space with M units. NGnet f
is defined by

a(t) = f(sb(t); θf ) =
M∑
i=1

Ni(sb(t))W̃
f

i s̃(t), (2)

where s̃b is the augmented vector of sb and (s̃b)T ≡ ((sb)T, 1).
Moreover, W̃

f

i ∈ <Na×(Ns+1) ≡ (W f
i , ri) and W f

i is
a linear regression matrix. Ni(sb(t)) is the i-th normalized
Gaussian function such as

Ni(sb(t)) ≡ Gi(sb(t))/
M∑

j=1

Gj(sb(t)), (3)

where Gi is a Gaussian function whose center is µf
i ∈ <Ns

and whose covariance matrix is Σf
i ∈ <Ns×Ns , such as

Gi(sb(t)) ≡ (2π)−
N
2

∣∣∣Σf
i

∣∣∣− 1
2

exp
[
−1

2
(sb(t) − µf

i )T(Σf
i )−1(sb(t) − µf

i )
]
, (4)

where
∣∣∣Σf

i

∣∣∣ is a determinant of matrix Σf
i . Note that we

denote a set of parameters of an NGnet f
{
µf

i ,Σf
i , W̃

f

i |i =
0, . . . ,M

}
as θf .

Normalized Gaussian functions Ni(sb(t))(i = 1, . . . ,M)
moderately partition the input space into M regions. The i-th
unit linearly approximates its output by W̃

f

i s̃(t) within the
corresponding region. NGnet output is given by a summation
of these outputs weighted by the normalized Gaussian func-
tions, as in Eq. (2).

Sensorimotor magnets are represented by NGnet f in
this module. Figure 2 shows how sensorimotor magnets are
illustrated where we suppose that input data are normally
distributed with a central focus on the center of an NGnet
unit. The distribution of output data is determined by the linear
regression matrix of the NGnet. If we regard transferred center
W̃

f

i µ̃f
i as vowel prototypes, where (µ̃f

i )T ≡ ((µf
i )T, 1), the

linear regression matrix can control the bias strength of the
vowel prototype. In other words, the smaller the eigenvalue of
W f

i , the more the distribution shrinks.

C. Vowel region mapping module

This module converts the other’s utterance a(t− 1) to auto
mirroring anticipation sg(t − 1). We use NGnet g to map
Na-dimensional input space onto Ns-dimensional output space



Fig. 2. Illustration of sensorimotor magnets with linear regression function

contrary to NGnet f in the sensorimotor magnet module. Auto
mirroring anticipation is calculated by

sg(t − 1) = g(a(t − 1); θg), (5)

where θg ≡
{
µg

i ,Σ
g
i , W̃

g

i |i = 0, . . . ,M
}

is a set of parame-
ters of NGnet g.

III. LEARNING METHOD FOR A ROBOT

We assume that the robot initially has an immature imi-
tation mechanism: the parameters of NGnet f , i.e., θf , in
the sensorimotor mapping module are randomly initialized.
Furthermore, we assume that it does not have auto mirroring
bias, i.e., α = 0, for the simplicity of the first simulation
trial. As a result, its vowel prototypes are not clear vowels
for humans before the learning. Here the robot task is tuning
parameters θf to match vowel prototype W̃

f

i µ̃f
i with clear

vowels for humans by mutual imitation.
In the T -th step of the imitation trials, a robot utters y(T ),

a sound in its utterable vowel region, and a caregiver utters
x(T ), which imitates y(T ). The robot updates parameters θf

with the EM algorithm [5][6][7] using the caregiver’s voice at
the last n steps x(t)(t = T−n+1, . . . , T ) as input data and its
own utterances at the last n steps y(t)(t = T −n + 1, . . . , T )
as output data.

IV. SIMULATION OF VOWEL MUTUAL IMITATION

We investigate the effects of the biasing elements on vowel
learning by simulating the mother-infant mutual imitation of
vowels with two imitation mechanisms.

A. Procedure

In simulations, an infant robot (hereinafter infant) and
a mother robot (hereinafter mother) alternately imitate one
another with their imitation mechanisms. The infant has an
immature imitation mechanism and updates parameters θf of
NGnet g with our proposed learning method, and the mother
has a mature imitation mechanism, so her imitation parameters
are fixed during a session of iterating mutual imitations.

A mother imitates her infant’s voice every step. Until n steps
have passed, the infant selects voices randomly with normal
distributions whose centers are its initial vowel prototypes and
utters them. After the n-th step, the infant basically imitates
the mother’s voice every step, but every fifth step it randomly

selects one of its own vowel prototypes and utters it. Until
n steps have passed, the infant does not update imitation
parameters θf since it does not have enough learning data.
We determined its initial imitation parameters so that its initial
vowel prototypes are randomly located in its vowel region. In
simulations, n = 500 and total learning steps TL = 5000.

B. Settings
We determined each utterable vowel region and the locations

of the mother’s vowel prototypes by imagining a real mother
and infant. Figure 3 shows the vowel region of real infants
and adults [8][9]. Vowel prototypes are distinguishable in
2-dimensional vowel space, which is represented with the
first formant frequency (F1) and the second (F2). As shown
in Fig. 3, the vowel regions of real infants and adults are
different from each other. For the current simulataion, vowel
regions both of the caregiver and the infant are determined
in 2-dimensional vowel space as shown in Fig. 4 so that the
difference between mother’s and infant’s one are highlighted.

Fig. 3. Vowel regions of real adults and infants in 2-dimensional formant
space [8][9]

Fig. 4. Settings of two vowel regions of infant and mother robots



C. Mature imitation mechanism for mother

We determined the locations of the mother’s vowel proto-
types xc

i and their number, assuming that she uses the five
Japanese vowels in the simulation. Therefore, as shown in
Fig. 4, the number of vowel prototypes, that is, the number of
units M of NGnet fc in the mother’s sensorimotor mapping
module, is set to five. Note that super suffix ’c’ indicates the
mother’s (caregiver’s) imitation parameters. Furthermore, we
assume that a mother knows the clearest vowels yc

i in an infant
vowel region; we determined these clearest vowels as

yc
i = xc

i +
(

400
600

)
, (6)

where xc
i = W̃

fc

i µ̃fc
i , which are the vowel prototypes of the

mother. In the simulations, clearest vowels yc
i are the target

vowels for an infant; in other words, the task is to match its
vowel prototypes W̃

f

i µ̃f
i with clearest vowels yc

i .
Considering all of the above assumptions, we determined

the parameters of NGnet fc in a mother’s sensorimotor magnet
module as the following:

µfc
i = xc

i +
(

400
600

)
(i = 1, . . . ,M), (7)

Σfc
i =

(
3600 0

0 3600

)
(i = 1, . . . ,M), (8)

W̃
fc

i =
(
(1 − βc)I, xc

i − (1 − βc)µfc
i

)
(i = 1, . . . ,M, 0.0 ≤ βc ≤ 1.0), (9)

where βc is a parameter that determines the strength of the
sensorimotor magnets. When βc is close to 0(1), a mother’s
imitation voice corresponds almost exactly to infant utterances
(either of her vowel prototypes).

In addition, we determined the parameters of NGnet gc in
the mother’s vowel region mapping module as follows:

µgc
i = xc

i (i = 1, . . . ,M), (10)

Σgc
i =

(
3600 0

0 3600

)
(i = 1, . . . ,M), (11)

W̃
gc

i =
(
I,µgc

i − xc
i

)
(i = 1, . . . ,M). (12)

The mother’s imitation mechanism has two parameters that
determine the strength of the biasing elements: one is αc

for auto mirroring bias, and the other is βc for sensorimotor
magnets. We investigated the effects of the biasing elements on
the learning result of an infant by simulating the interactions
and changing these parameters.

D. Immature imitation mechanism for infant

In this study, we assume that an infant initially does not
have accurate knowledge about its mother’s vowel prototypes,
so it cannot know which vowel corresponds to each of them
within its own vowel region. Based on these assumptions, we
randomly give initial parameters to the EM algorithm every
step as follows:

µf
i = N (xc

i , 2002I) (i = 1, . . . ,M), (13)

Σf
i =

(
N (3600, 302) 0

0 N (3600, 302)

)
(i = 1, . . . ,M),

(14)

W̃ f
i =

(
N (1, 0.52) N (0, 0.52) N (500, 5002)
N (0, 0.52) N (1, 0.52) N (500, 5002)

)
(i = 1, . . . ,M), (15)

where xc
i is the i-th vowel prototype of the mother and

N (p, q) denotes a random value sampled from normal dis-
tribution with center p and covariance matrix q.

V. RESULTS

A. Interaction Transitions

Figure 5 shows the transition of the vowel clarity of the
infant utterances, the mother utterances, and the infant vowel
prototypes where the mother has all the biasing elements
(αc = 0.5, βc = 0.6). In this graph, the horizontal axis shows
the learning steps, and the three curves indicate five times
the average of 500 steps’ moving average of the following
distances: (1) from an infant utterance to its nearest target
vowel, i.e., clearest vowel in the infant’s vowel region; (2) from
a mother utterance to its nearest vowel prototype, i.e., clearest
vowel in the mother’s vowel region; (3) average distance from
each target vowel to its nearest vowel prototype of the infant
in each step for evaluating the vowel clarity of each of the
above. This graph indicates that although infant utterances
are not as clear as mother utterances in the early steps, they
became clearer over the time-steps as well as the infant vowel
prototypes.
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Fig. 5. Transitions of vowel clarity of infant utterances, mother utterances,
and infant vowel prototypes where the mother has all biasing elements (αc =
0.5, βc = 0.6).

B. Difference of learning results under several conditions

Figure 6 shows the differences of the learning results under
several conditions where the strengths of the mother’s biasing
elements are different and each distribution is an example of
the result under each condition. We simulated interaction under
the following conditions:



(a) where a mother has both auto mirroring bias and
sensorimotor magnets (αc = 0.5, βc = 0.6),

(b) where a mother only has auto mirroring bias
(αc = 0.5, βc = 0.0),

(c) where a mother only has sensorimotor magnets
(αc = 0.0, βc = 0.6),

(d) where a mother has no biasing element
(αc = 0.0, βc = 0.0).

In these distributions, red (blue) dots represent the infant
(mother) utterances in the vowel space in the final 1000 steps.
The apexes of the red (blue) pentagons represent the target
vowels of the infant (mother vowel prototypes). Black dots
represent the vowel prototypes of the infant after learning.
These distributions indicate that the mother’s biasing elements
heavily affected the results of the infant’s learning; voice
clusters seem smaller under conditions (a) and (c) than under
conditions (b) and (d).
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Fig. 6. Difference of learning results under several conditions. Apexes of red
pentagons represent target vowels of infant, in other words, clearest vowels
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learning.

VI. DISCUSSION

A. Effect of mother’s sensorimotor magnets
We can see smaller voice clusters under conditions where

a mother has sensorimotor magnets in Figs. 6(a) and (c). This
suggests that the mother’s sensorimotor magnets affect the
formation of such voice clusters.

To investigate the relation between the mother’s sensorimo-
tor magnets and voice cluster formation, we further simulated

the interaction under several conditions where the strengths
of the mother’s sensorimotor magnets are different. Figure 7
shows the relationship between sensorimotor magnet strength
βc (horizontal axis) and the extent of infant voice convergence
(vertical axis) during 1000 steps, which is the averaged value
of the five-time simulation with each βc in three αc conditions.
This figure indicates that the stronger the sensorimotor mag-
nets were, the more tightly the infant voice clusters gather and
bundle. Note that the centers of these clusters are not always
the clearest vowels, as shown in Fig. 6(c).
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B. Effect of mother’s auto mirroring bias

We re-focus on the result shown in Fig. 6. The rating of
infant vowel prototypes, which is expressed by the average
distance from each target vowel to the nearest infant vowel
prototype, is relatively higher in condition (a) than in condition
(c). Although this suggests that the mother’s auto mirroring
bias helps the infant vowel prototypes approach clearer vowels,
this effect probably acts with the effect of the mother’s
sensorimotor magnets. This is because the rating of the infant’s
vowel prototypes is lower in condition (b) than in condition
(a), although the strengths of the auto mirroring bias have the
same degree.

To further investigate the effect of mother’s auto mirroring
bias on infant vowel prototypes, we simulated interaction in
several conditions where the strengths of both auto mirroring
bias and sensorimotor magnets were different. Figure 8 shows
the relationship between the strengths of auto mirroring bias
αc (vertical axis) and sensorimotor magnets βc (horizontal
axis) and the average distance from each target vowel to the
nearest vowel prototypes of the infant after learning in each
condition (color density), which is the averaged value of five-
time simulation with each set of αc and βc.

This figure indicates that the optimal strength of auto mirror-
ing bias depends on the strength of the sensorimotor magnets.
This can be explained by the features of auto mirroring bias
and sensorimotor magnets. When the sensorimotor magnets
are stronger, voice clusters gather and bundle more tightly at
certain locations, even though the centers of these clusters are
not clearest vowels. Therefore it’s more probable that stronger



auto mirroring bias is needed to guide such tighter voice
clusters to become clear vowels.
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C. Correspondence

As shown in Fig. 5, infant vowel prototypes gradually
became clear vowels through mutual imitation with a mother in
simulations, which follows the result of a previous experiment
[3]. This result indicates the validity of considering three bi-
asing elements, perceptual magnet effect, articulatory magnet
effect, and auto mirroring bias, when constructing an imitation
mechanism under a mutual imitation situation. This result also
suggests that what enabled a robot to acquire clear vowels in
the previous experiment was errors in human imitation derived
from biasing elements. Infant studies report that real mothers
and infants imitate one another’s speech [1][2] and that the
linguistic experience affects infant phonetic perception and
vocalization[10][11][12]. Our result implies that real infants
develop vowels through mutual imitation of them with their
mothers, and we conclude that “errors” in mother imitations
could guide infant vowel development.

VII. CONCLUSION

We simulated mother-infant mutual imitation of vowels with
imitation mechanisms and considered two biasing elements:
auto mirroring bias and sensorimotor magnets. Simulation
results indicate that these biasing elements of the mother
guide the infant vowel prototypes to become clear vowels;
the sensorimotor magnets help form small vowel clusters and
the auto mirroring bias shapes these clusters to become clearer
vowels.

In simulations, we assumed that a mother always imitates
an infant. However, this does not reflect real mother-infant
interaction because in more realistic environment, mothers do
not always perfectly imitate their infants. Therefore one of
our next goals is to extend the proposed mechanism so that
infants can learn vowels in conditions where caregivers do
not always imitate them. Furthermore, we fixed the strength
of the auto mirroring bias of the mother during interactions
and assumed that a robot does not have auto mirroring bias.
We will investigate how such mother and infant parameters
develop. The auto mirroring bias of a mother might become

stronger as the infant imitation becomes more accurate since it
seems to depend on the extent to which the mother anticipates
her infant imitation.

We consider that auto mirroring bias plays important roles
not only in guiding infant vowel prototypes to become clear
vowels but also in maintaining mother-infant interaction. We
expect that auto mirroring bias forms an intra-personal positive
feedback loop between the observation to be imitated and the
feeling that the opponent is imitative. Yoshikawa et al. suggest
the existence of inter- and intra-personal positive feedback
loop not only between observation and feeling but also be-
tween feeling and action in their spiral response-cascade hy-
pothesis [13]. They try to explain the mechanism responsible
for the emergence and maintenance of communication between
agents not just between a mother and an infant. We consider
that auto mirroring bias is an instance of the intra-personal
facilitation on interaction and mutual imitation continues with
the support of the bias. We will further investigate the function
of auto mirroring bias for the emergence and maintenance of
mutual imitation.
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