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Abstract—This paper models the process of Applied Behavior
Analysis (ABA) therapy of autistic children for eye contact as the
learning of the categorization and preference through the interac-
tion with a caregiver. The proposed model consists of the learning
module and visual attention module. The learning module learns
the visual features of higher order local autocorrelation (HLAC)
that are important to discriminate the visual image before and
after the reward is given. The visual attention module determines
the attention point by a bottom-up process based on saliency map
and a top-down process based on the learned visual feature. The
experiment with a virtual robot shows that the robot successfully
learns visual features corresponding to the face firstly and the
eyes afterwards through the interaction with a caregiver. After
the learning, the robot can attend to the caregiver’s face and
eyes as autistic children do in the actual ABA therapy.

Index Terms—categorization, autism, ABA therapy, eye con-
tact, HLAC, weakly supervised learning

I. INTRODUCTION

In adaptive communication, it is necessary to learn what in-
formation an agent should pay attention to. Especially in visual
information, this includes two issues: (1) to find appropriate
visual pattern and (2) to give the meaning in communication
to the acquired pattern. However, these two kinds of issues
are difficult to separate clearly, and it is necessary to design
a method to find important visual information appropriately
depending on the situations.

This is closely related to cognitive development of human.
Infants are known to have the preference to the face-like
pattern just after their born, and this ability is believed to be
innate [1] [2]. This ability matures as they grow up so that
they can learn to distinguish and categorize different people
in terms of various points [3]. However, recently, Fasel et al.
mentioned that only 6 minutes are enough to collect the data to
train the detector for face-like image and it is still questioned
that the facial preference is innate [4]. On the other hand,
some people with autism spectrum disorders do not show the
preference to attend human faces. This is thought to be one
of the causes why they fail to learn how to communicate
with others. Actually, some therapy emphasizes in training
autism children to look at the other’s face and they admit
the improvement in social cognitive ability to some extent
[5]. In these two examples, categorization through interaction
is an interesting problem for modeling as the constructivism
approach [6].

The problem of categorization through interaction can be
modeled as the categorization of data in one sensor based
on another sensor in multi-modal sensory inputs. In this
paper, the therapy of children with autism spectrum disorders
for acquiring eye contact based on ABA (Applied Behavior
Analysis) is modeled as such an example of the categorization
learning through interaction. With this model, the communi-
cation interaction promotes the categorization of visual infor-
mation. Then, the new categorization affects the preference of
the agent behavior in interaction, which promotes the more
categorization of visual information afterwards.

This paper is organized as follows. First, the procedure that
are actually carried out in the therapy for children with autism
spectrum disorders is introduced. Second, the learning model
to explain the learning process of children with autism spec-
trum disorders is proposed. Third, experimental results with
virtual robot are shown. Finally, discussion and conclusions
are given.

II. CATEGORIZATION THROUGH
COMMUNICATION

It is observed that some people with autism spectrum
disorders have a weak preference to the eyes of others [7].
This distinctive difference of the preference of the attention
from usual people is suspected as one of the causes why
children with autism spectrum disorders fail to acquire the
communication skills. However, some children with autism
spectrum disorders can acquire the preference to the eyes
through the Applied Behavior Analysis (ABA) therapy. ABA
therapy was firstly developed by Lovaas, and it is reported that
social skills of children with autism spectrum disorders are
improved to some extent through ABA therapy [8]. Although
many techniques are proposed in ABA therapy, the basic idea
is to classify the social behaviors into the behavior elements
and reinforce each behavior element by the reward. Fig. 1
shows the process of the ABA therapy to reinforce the eye
contact behavior to children with autism spectrum disorders
that are actually applied by the therapist [5]. In the first stage,
an autistic child attends only to the object that he/she wants,
such as a favorite toy, and does not attend to the therapist.
In the training phase, the therapist does not give the object
even if the child reach his/her hand to the object until the
child happens to move their gaze to the face of the therapist.



As the therapy proceeds, the autistic child learn to look at
the face and afterwards the eyes of the therapist when he/she
feels demands. In the actual therapy, this training is regarded
as one of the most important stages for the following therapy
for various social cognitive skills [5].

Fig. 1. The process of the ABA therapy for eye contact

In this process, it is necessary for the autistic child to realize
that the visual pattern of the face and the eyes have some
important information and for the reward and to categorize
these patterns as such, even though there are many possible
visual features in his/her visual field. The categorization of
visual features are thought to affect to the visual attention
and vise verse in the communication interaction. Thus, in
this paper, we propose a learning model that categorizes the
important visual feature based on the reward information to
analyze the relationship between the visual attention and the
categorization in the communication.

III. LEARNING KEY FEATURES BY REWARD

A. Overview

Fig. 2 shows an overview of the proposed system. The
system consists of the learning system and the vision system.
The learning system records the images and separates them
into two groups depending on the timing before and after
the reward is given. Then the visual features are learned so
that they discriminate the images into two groups well. In
the vision system, input images are processed with the top-
down and bottom-up processes to calculate the candidates
of the attention points in the camera image that the agent
attends to. The bottom-up process selects the attention points
by the saliency level of the image, and the top-down process
selects the attention points by the similarity to the learned
visual features. In the following, the details of the system are
explained.

B. Segmental HLAC Features

1) HLAC: Higher order local autocorrelation (HLAC) fea-
ture is proposed by Otsu and Kurita [9]. The N -th order
autocorrelation functions with displacements (a1, a2, ..., an)
from the reference point r are calculated as

xN (a1, a2, · · · , aN ) =
∫

I(r)I (r + a1 ) · · · I (r + aN )dr , (1)

where I(r) is the intensity at the position r. In HLAC, the num-
ber of these autocorrelation functions, N , is usually limited up
to the second (N = 0, 1, 2), and the range of the displacements
is limited to the local 3 x 3 window as shown in Fig. 1.
The element of HLAC features (corresponding to each local
pattern) is calculated as the integration of the autocorrelation
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Fig. 2. An overview of the proposed system
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Fig. 3. Local mask patterns for computing HLAC features

in each pixel all over the image. HLAC features have shift-
invariant because autocorrelation function is shift-invariant. As
HLAC keeps the generality in the image, it is also used for
facial expressions by weighting HLAC vectors [10].

C. Evaluation of HLAC features for facial detection

In the existing studies using HLAC features for recognition,
HLAC features are usually weighted by linear discriminant
analysis [11] [12] or Fisher weight maps [10] for improving
the recognition rates. However, in weakly supervised learning,
it is difficult to acquire the objective data. Only the labeled
(knowing the object is included but not knowing where it is)
and unlabeled images are available. In this problem setting, it
is difficult to calculate the appropriate weights in advance. Be-
fore using the HLAC features for weakly supervised learning,
we tested whether raw HLAC features have the appropriate
characteristics for detecting the face.

Before calculating the HLAC features, the captured camera
image is processed by the Canny filter to extract the edge
features.



Whether the segment x includes an object (in this case, the
face) or not is evaluated by the distance to the reference HLAC
feature,

d = ∥hx − href∥ (2)

and the segment is labeled depending on the distance,

lx =
{

1 if d < φ
0 else

(3)

In the first test, the robustness for detection is examined in
the experimental environment. Fig. 4 shows the uniqueness of
the HLAC feature corresponding to the face when the segment
including the face is given. The region colored in red is the
area that is evaluated as including the front face. The image
size is 640 × 480 and the segment size (surrounded by white
lines) is 200 × 200. The threshold is set as φ = 40 (this
value is comparable to the learning result explained in the
next section).

Fig. 4. Face detection in complex environment

In the second test, the effects of the face orientation on the
HLAC features are examined. Fig. 5 shows the distance of the
HLAC features between the faces with various orientations
and the front face (4). In this figure, 8 is the average and
the standard deviation of the distance to non-face segments
selected randomly in the experimental environment. The image
mentioned in 8 is one of the examples in the environment
except human face. This graph shows the possibility that
we can set the threshold that separates the face including
various orientations from the other environment and can set
the threshold that separates the front face from the directed
faces.

D. Finding the key feature

This section proposes a method that finds the key feature
href and the appropriate threshold φ to evaluate whether one
segment includes the object or not, based on the data set:
labeled images and unlabeled images. The proposed system is
shown in Fig. 6. Note that in labeled image we do not know
which segment includes the object (in this case, the face). The
basic idea is to extract the segment including the object from
the labeled images.

The main procedure is following.
1) Select one reference image Xref ∈ A among the labeled

images A = {X a
1 ,X a

2 , · · · ,X a
N }.

Fig. 5. The distances of HLAC features from the frontal to the oriented
faces and the environment

2) Segment the reference image Xref into the L image
segments Zref

i (i = 1...L).
3) For each reference image segment Zref

i and the possible
threshold value φ, proceed the following procedures.

a) Segment the labeled image Xa
n ∈ A and unlabeled

images Xb
n ∈ B into L image segments, Za

n, i′，
Zb

n, i′ .
b) Calculate the distances, da

i i′ , db
i i′ , between each

segment, Za
n, i′ , Zb

n, i′ , and the reference segment,
Zref

i .
d
(a,b),n
i i′ = ∥ h(a,b),n

i′ − href
i ∥ (4)

where h(a,b),n
i′ is the HLAC feature of the image

segment Za,b
n, i′ , and href

i is the HLAC feature of
the image segment Zref

i .
c) Among the image segments in labeled and un-

labeled images, select the segments, Za
n, i′min

,
Zb

n, i′min
, that has the minimum distance from the

reference segment Zref
i .

i′a,b
min = argmin

i′
∥ h(a,b),n

i′ − href
i ∥

= argmin
i′

d (a,b),n
i, i′

(5)

d) Calculate the distances between the image seg-
ments, Za

n, i′min
, Zb

n, i′min
and the reference image

segment, da, n
i i′min

, db, n
i i′min

as follows,

d
(a,b),n
i i′min

= min
i′∈Xa

n,Xb
n

d
(a,b),n
i i′ (6)

e) Assign the label to the segment that mentions
whether the segment includes the object or not,

l a,b
n =

{
1 if d

(a,b),n
i i′min

< φ

0 else
(7)

f) Evaluate the recognition rate by comparing the
assigned label with the group label,

Ia,b
n =

{
1 if l a

n = 1 or l b
n = 0

0 else
(8)
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Fig. 6. Overview of the learning system for important visual features

µ(φ, hi) =

∑N
n=1,a,b Ia,b

n

2N
(9)

4) Find the set of HLAC feature and the threshold that
makes the highest recognition rate.

(φmax, himax) = argmax
i,φ

µ(φ, hi) (10)

E. Visual attention system

The visual attention system decides the attention point from
the candidates that are calculated in the bottom-up process
(based on the saliency map [13]) and the top-down process
(based on the learned HLAC features) (Fig. 7). The attention
point calculated in the top-down process and in the bottom-up
one is selected with the probability P and (1−P ), respectively.
The probability P is updated depending on the reward as
follows,

Pt = Pt−1 + αrt (11)

where Pt indicates the probability to select the candidate
calculated in the top-down process when the t-th reward rt

is given. In the experiment, α is set to 0.2. Thus, the robot
learns to attend to the points that are related to the reward.
When the top-down process successes in learning the face or
eyes pattern as reward-related information, the robot learns
to show the preference to the face or the eyes. The attended
area is defined as the square area whose center is the attended
point. The size of the attended area is set to 480 × 320, two
thirds of the size of camera image, 640× 480. The images of
the attended area are recorded as the labeled and unlabeled
images.

Fig. 7. Visual attention system

The robot has the demanding state. When the demanding
state starts, the robot starts to record the attended areas as the
unlabeled group until it receives the reward, and it records the
attended areas after the reward is given as the labeled group
(Fig. 8).

r
“with reward”“no reward”

want ! t

demand

state

images

Remember Remember

images

reward

Fig. 8. The robot remembers images depending on the timing when it gets
the reward.

F. Interaction procedure

During the learning, the size of the image segment for
learning becomes smaller depending on the variance in the
learned HLAC features, v(h) (Fig. 9). In this paper, the sizes
of the image segment is set to 300 × 300, 200 × 200 and
100 × 100 as the learning stage proceeds.

In the first interaction, the robot starts the learning with-
out knowing the facial pattern. The attention point is only
calculated by the bottom-up process using saliency map. The
caregiver gives the reward to the robot when the robot happens
to see the caregiver. After the several learning, the variance of
the selected visual features become small and the robot begin
to look at the face. Thus, the characteristic of the labeled and
unlabeled groups at this stage becomes different from that at
the first stage. When the robot acquires the HLAC feature of
the facial pattern, the robot often attends the caregiver even if
the caregiver does not see the robot. Therefore, it is expected
that the main difference in the images between the unlabeled



and labeled group becomes the appearance of the face when
the caregiver look and does not look at the robot.

Fig. 9. Stream of Learning

IV. EXPERIMENTAL RESULTS

A. Experimental setting

Fig. 10 shows the experimental setting. The human caregiver
interacts with the virtual robot in the screen. The IEEE 1394
camera is set on the display. The size of the camera image
is 640×480 pixels. The gaze direction of the virtual robot is
calibrated with attention point in the camera image in advance.
The reward is given to the robot by the caregiver with the
keyboard when the caregiver feels that the virtual robot looks
her.

Fig. 10. The environment of the experiments

B. Learning through interaction

In the first experiment, it is shown that the proposed system
can learn the visual features corresponding to the caregiver’s
face and eyes based on the reward information. Fig. 11 shows
the learned image segments that are evaluated as important
for discrimination of the labeled and unlabeled images. The
green square indicates the attended area, and the red squares
indicate the areas that have high recognition rate µ in the eq.
(9). As mentioned in the figure, as the learning stage proceeds,
the selected image patterns change from the face to the eyes.

Fig. 12 shows the attended points of the robot before and af-
ter the learning. Before the learning, the attention points move
around corresponding to the slight changes of the caregiver’s
postures and the environment. After the learning, the robot
attention points gathers around the eyes of the caregiver by
virtue of the learned visual feature.

The variance of the attention points to the eye are calculated
to evaluate how the attention points gathers around the eyes.
The attention points are recorded during 1 minute and the
distance from the attention points to them are calculated in
the pixel unit. Fig. 13 shows the resultant variances before

Fig. 11. Learned image segments in each learning stage

(a) Before learning (b) After learning

Fig. 12. The distribution of attention points of the robot before and after the
learning

and after the learning. This graph shows the attention points
converges to the eye pattern well in virtue of the learning.
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Fig. 13. The variance of the distance of the attention points from the eye
before and after the learning

C. The effects of the motion on the learning

In the second experiment, the effects of the saliency on the
learning of the preference is investigated. It is reported that the
attention of some children with autism spectrum disorders is
less affected by the motion information [14] and it is thought
that this might be the cause of the failure of children with
autism spectrum disorders to acquire the communication skills.
We investigate how the learning of the visual feature and the
preference of the attention are affected in case that the saliency
of motion is not utilized.

Fig. 14 shows difference between the attention points based
on the saliency map with and without motion saliency. With
motion saliency, the face is salient to some extent even before
the learning because of the eye blinks and the head motion,
and the attention can be easily led to the face by the appealing
motion like ”Look at me!” that usual people often do to an



infant. On the other hand, without motion saliency, once the
attention points fall to the edges or color in the environment,
it is difficult to lead the attention to the human.

(a) With motion informa-
tion

(b) Without motion infor-
mation

Fig. 14. Difference of Gaze direction using Saliency Map

This attention difference affected the learning time. Fig. 15
shows the learned visual features in each learning time. With
the motion saliency, the robot can learns the facial pattern
with only once. Without the motion saliency, the robot still
can learn the facial pattern but it took 3 times learning time.
These results show that the attention control with the motion
saliency promotes the learning of the important visual features.

Fig. 15. Difference of learning time

V. DISCUSSION AND CONCLUSION

This paper models the process of the therapy for children
with autism spectrum disorders based on ABA as the learning
problem of the categorization and the preference through the
interaction. The proposed learning system can acquire the
visual features in the camera image according to the timing
when the reward is given. The robot decides an attention point
through the bottom-up process based on the saliency map and
the top-down process based on the learned visual feature. In
the experiment, the caregiver gives the reward to the robot
when she feels the robot looks at her. First the robot acquires
the visual feature of the caregiver’s face comparing the images
that include the caregiver’s face with the images that do not
include. Afterwards, the robot often looks at the caregiver
with the virtue of the learned visual feature. Thus, in turn,
it compares the images of oriented face of the caregiver with
those of the front face, and can acquire the eye pattern. This is
a good example of the interactions among the communication
interaction, categorization and the preference.

This paper also reveals that it is important to change the
attention based on the motion saliency for promoting the
learning of important visual feature. It is said that children

with autism spectrum disorders are little affected by the motion
saliency. However, the mechanism of this lack of attention
to the motion is not made clear yet. The likely causes are
that they cannot detect the motion saliency as assumed in
this paper or that they cannot move their attention to the
detected salient point. However, considering that some people
with autism spectrum disorders are well known to look at the
regular motions with enthusiasm, the control does not seem to
have a problem. Thus, it may be that they cannot release their
attention and cannot back to the preparation state so that they
can attend to the new salient points. The proposed system
models the attention system very simply as the bottom-up
process based on the saliency map and the top-down process
based on the learned visual feature. In the future model, we
are planning to make a more detailed attention model and
to investigate the role of the attention in the communication
learning so that the model can be compared with the observed
phenomena in children with autism spectrum disorders .
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