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Abstract— Life-time development of behavior learning seems
based on not only self-learning architecture but also ex-
plicit/implicit teaching from other agents that is expected to ac-
celerates the learning. This paper presents a method for a robot
to understand unfamiliar behaviors shown by others through
the collaboration between behavior acquisition and recognition
of observed behaviors, where the state value has an impor-
tant role not simply for behavior acquisition (reinforcement
learning) but also for behavior recognition (observation). That
is, the state value updates can be accelerated by observation
without real trials and errors while the learned values enrich the
recognition system since it is based on estimation of the state
value of the observed behavior. The validity of the proposed
method is shown by applying it to a dynamic environment where
two robots play soccer.

I. INTRODUCTION

REINFORCEMENT learning has been studied well for
motor skill learning and robot behavior acquisition in

both single and multi-agent environments. Especially, in the
multi-agent environment, observation of others make the
behavior learning rapid and therefore much more efficient
[1], [2], [3]. Actually, it is desirable to acquire various
unfamiliar behaviors with some instructions from others in
real environment because of huge exploration space and
enormous learning time to learn. Therefore, behavior learning
through observation has been more important. Understanding
observed behaviors does not mean simply following the
trajectory of an end-effector or joints of demonstrator. It
means reading his/her intention, that is, the goal of the
observed behavior and finding a way how to achieve the
goal by oneself regardless of the difference of the trajectory.
From a viewpoint of the reinforcement learning framework,
this means reading rewards of the observed behavior and
estimating sequence of the value through the observation.

Takahashi et al.[4] proposed a method of not only to learn
and execute a variety of behaviors but also to recognize
behavior of others supposing that the observer has already
acquired the values of all kinds of behaviors the observed
agent can do. The recognition means, in this paper, that
the robot categorizes the observed behavior to a set of its
own behaviors acquired beforehand. The method seamlessly
combines behavior acquisition and recognition based on
“state value” in reinforcement learning scheme. Reinforce-
ment learning generates not only an appropriate behavior (a
map from states to actions) to accomplish a given task but
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also an utility of the behavior, an estimated discounted sum
of rewards that will be received in future while the robot
is taking an appropriate policy. This estimated discounted
sum of reward is called “state value.” This value roughly
indicates closeness to the goal state of the given task if the
robot receives a positive reward when it reaches the goal and
zero else, that is, if the agent is getting closer to the goal, the
value becomes higher. This suggests that the observer may
recognize which goal the observed agent likes to achieve if
the value of the corresponding task is going higher.

This paper proposes a novel method that enhances behav-
ior acquisition and recognition based on interaction between
learning and observation of behaviors. A robot learns its
behaviors through not only trials and errors but also reading
rewards of the observed behaviors of others (including robots
and humans). Fig.1 shows a rough idea of our proposed
method. V (s) and V̂ (s) are the state value updated by
oneself and the state value estimated though observation,
respectively. Takahashi et al.[4] showed the capability of the

Fig. 1. Interaction between Learning and Observation of Behaviors

proposed method mainly in case that the observer has already
acquired a number of behaviors to be recognized before-
hand. Their case study showed how this system recognizes
observed behaviors based on the state value functions of self-
behaviors. This paper shows how the estimated state value
of observed behavior, V̂ (s), gives feedback to learning and
understanding unfamiliar observed behaviors and this feed-
back loop enhances the performance of observed behavior
recognition. The validity of the proposed method is shown
by applying it to a dynamic environment where two robots
play soccer.

II. EXPERIMENTAL SETUP AND AN ASSUMPTION

Fig.2 shows two robots, a human player and color-coded
objects, e.g., an orange ball, and a goal. The robot has
an omni-directional camera on top. A simple color image
processing is applied in order to detect the color-coded



Fig. 2. Robots with a human player in a Soccer Field

objects and players in real-time. The mobile platform is based
on an omni-directional vehicle. These two robots and the
human play soccer such as dribbling a ball, kicking it to a
goal, passing a ball to the other, and so on. While playing
with objects, they watch each other and try to understand
observed behaviors and emulate them. In this paper, all
experiments are done in computer simulation environment
and the real robot experiments are planning to have in near
future.

A learning/recognizing robot assumes that all robots and
even the human player share reward models of the behaviors.
For example, all robots and the human player receive a
positive reward when the ball is kicked into the goal. This
assumption is very natural as we assume that we share
“value” with colleagues, friends, or our family in our daily
life.

III. OUTLINE OF THE MECHANISMS

The reinforcement learning scheme, the state/action value
function, and the modular learning system for various behav-
ior acquisition/emulation are explained, here.

A. Behavior Learning Based on Reinforcement Learning

Fig. 3. Agent-environment interaction

Fig.3 shows a basic model of reinforcement learning. An
agent can discriminate a set S of distinct world states. The
world is modeled as a Markov process, making stochastic
transitions based on its current state and the action taken by
the agent based on a policy π. The agent receives reward rt

at each step t. State value V π , the discounted sum of the
reward received over time under execution of policy π, will
be calculated as follows:

V π =
∞∑

t=0

γtrt . (1)

In case that the agent receives a positive reward if it reaches
a specified goal and zero else, then, the state value increases
if the agent follows a good policy π. The agent updates its
policy through the interaction with the environment in order
to receive higher positive rewards in future. Analogously,
as animals get closer to former action sequences that led
to goals, they are more likely to retry it. For further details,
please refer to the textbook of Sutton and Barto[5] or a survey
of robot learning[6].

Here we introduce model-based reinforcement learning
method. A learning module has a forward model which
represents the state transition model and a behavior learner
which estimates the state-action value function based on the
forward model in a reinforcement learning manner.

Each learning module has its own state transition model.
This model estimates the state transition probability P̂a

ss′ for
the triplet of state s, action a, and next state s′:

P̂a
ss′ = Pr{st+1 = s′|st = s, at = a} (2)

Each module has a reward model R̂s, too:

R̂(s) = E{rt|st = s} (3)

All experiences (sequences of state-action-next state and
reward) are simply stored to estimate these models.

Now we have the estimated state transition probability P̂a
ss′

and the expected reward R̂s, then, an approximated state-
action value function Q(s, a) for a state action pair s and a
is given by

Q(s, a) =
∑
s′

P̂a
ss′

[
R̂(s′) + γV (s′)

]
(4)

V (s) = max
a

Q(s, a) , (5)

where γ is a discount factor.

B. Modular Learning System
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Fig. 4. Modular learning system

In order to observe/learn/execute a number of behaviors in
parallel, we adopt a modular learning system. Many modular
architectures have been proposed so far [7], [8], [9]. Each
module is responsible for learning to achieve a single goal.
One arbiter or a gate module is responsible for merging
information from the individual modules in order to derive a
single action performed by the robot. Fig.4 shows a sketch
of such a modular learning system. We prepare a number of
behavior modules (BMs in the figure) each of which adopts
the behavior learning method described in III-A. The module
is assigned to one goal-oriented behavior and estimates one



action value function Q(s, a). A module receives a positive
reward when it accomplishes the assigned behavior or zero
reward else. The behavior module has a controller that
generates predictions of next state values, selecting the action
with the maximum value. The gating module will then select
one output from the inputs of the different behavior modules
according to the player’s intention.

C. Behavior Recognition based on Estimated Values

Each behavior module can estimate a state value of
observed behavior at an arbitrary time t to accomplish
the specified task. An observer watches a demonstrator’s
behavior and maps the sensory information from an observer
viewpoint to a demonstrator’s one with a simple mapping
of state variables1. Fig.5 shows a simple example of this
transformation. It detects color-coded objects on the omni-
directional image, calculates distances and directions of the
objects in the world coordinate of the observer, and shifts the
axes so that the position of the demonstrator comes to center
of the demonstrator’s coordinate. Then it roughly estimates
the state information in the egocentric coordinate and the
state of the demonstrator. Every behavior module estimates
a sequence of its state value from the estimated state of the
observed demonstrator and the system selects modules which
values are increasing. The learner tries to acquire a number

TABLE I
LIST OF BEHAVIORS LEARNED BY SELF AND STATE VARIABLES FOR

EACH BEHAVIOR

Behavior State variables
Approaching a ball db

Approaching a goal dg

Approaching the teammate dr

Shooting a ball db, dg , θbg

Passing a ball db, dr , θbr

of behaviors shown in Table I. The table also describes
necessary state variables shown in Fig.5 for each behavior.
Each state variable is divided into 11 in order to construct
quantized state space. 4 actions are prepared to be selected by
the learning modules: Approaching the goal, approaching the
teammate, going in front of the ball while watching the goal,
and going in front of the ball while watching the teammate.

Fig.6 shows an example task of navigation in a grid world
and a map of the state value of the task. There is a goal
state at the top center of the world. An agent can move one
of the neighboring square in the grids every step. It receives
a positive reward only when it stays at the goal state while
zero else. There are various optimal/suboptimal policies for
this task as shown in the figure. If one tries to match the
action that the agent took and the one based on a certain
policy in order to recognize the observed behavior, it has to
maintain various optimal policies and evaluate all of them
in the worst case. On the other hand, if the agent follows

1For reasons of consistency, the term ”demonstrator” is used to describe
any agent from which an observer can learn, even if the demonstrator does
not have an intention to show its behavior to the observer.

Fig. 5. Estimation of view of the demonstrator. Left : a captured image
the of observer, Center : object detection and state variables for self, Right
: estimation of view of the demonstrator

Fig. 6. Behavior recognition based on the change of state value

an appropriate policy, the value is going up even if it is
not exactly the optimal one. Likewise, in emulation one is
not committed with the optimal policy, as the behaviors are
the ones available in the portfolio of the agent, which are
not necessarily the optimal ones, but the ones that the agent
knows to lead to the goal.

Fig. 7. Behavior inference diagram

While an observer watches a demonstrator’s behavior, it
uses the same behavior modules for recognition of observed
behavior as shown in Fig.7. Each behavior module estimates
the state value based on the estimated state of the observed
demonstrator and sends it to the selector. The selector
watches the sequence of the state values and selects a set of
possible behavior modules of which state values are going
up as a set of behaviors the demonstrator is currently taking.
As mentioned before, if the state value goes up during a
behavior, it means that the module is valid for explaining
the behavior. The observed behavior is recognized by a set
of behaviors whose modules’ values are increasing.

Here we define reliability g that indicates how much the
observed behavior would be reasonable to be recognized as
a behavior

g =

 g + β if Vt − Vt−1 > 0 and g < 1
g if Vt − Vt−1 = 0
g − β if Vt − Vt−1 < 0 and g > 0 ,



where β is an update parameter, and 0.1 in this paper. This
equation indicates that the reliability g will become large if
the estimated utility rises up and it will become low when
the estimated utility goes down. We put another condition in
order to keep g value from 0 to 1.

D. Learning from Observation

In the previous section, behavior recognition system based
on state value of its own behavior is described. This system
shows robust recognition of observed behavior[10] only
when the behavior to be recognized has been well-learned
beforehand. If the behavior is under learning, then, the
recognition system is not able to show good recognition
performance but it can at least read reward at the final state.
The trajectory of the observed behavior can be a bias for
learning behavior and might enhance the behavior learning
based on the trajectory and the read reward. The observer
cannot watch actions of observed behavior directly and can
only estimate the sequence of the state of the observed robot.
Let so

t be the estimated state of the observed robot at time t.
Then, the estimated state value V̂ o of the observed behavior
can be calculated as below:

V̂ o(s) =
∑
s′

P̂o
ss′

[
R̂(s′) + γV o(s′)

]
(6)

where P̂o
ss′ is state transition probability estimated from the

behavior observation. This state value function V̂ o can be
used for can be used as a bias of the state value function of
the learner V . The learner updates its state-action value func-
tion Q(s, a) during trials and errors based on the estimated
state value of observed behavior V̂ o as below:

Q(s, a) =
∑
s′

P̂a
ss′

[
R̂(s′) + γV ′(s′)

]
(7)

while

V ′(s) =
{

V (s) if V (s) > V̂ o(s)
V̂ o(s) else

This is a normal update equation as shown in (4) except using
V ′(s). The update system switches the state value of the next
state s′ between the state value of own learning behavior
V (s′) and the one of the observed behavior V̂ o(s′). It takes
V (s′) if the state value of own learning behavior V (s′) is
bigger than the one of the observed behavior V̂ o(s′), V̂ o(s′)
else. This means the state value update system takes V̂ o(s′) if
the learner does not estimate the state value V (s′) because of
lack of experience at the state s′ from which it reaches to the
goal of the behavior. V̂ o(s′) becomes a bias for reinforcing
the action a from the state s even though the state value of
its own behavior V (s′) is small so that it leads the learner
to explore the space near to the goal state of the behavior
effectively.

IV. BEHAVIOR DEVELOPMENT THROUGH INTERACTION

A. Experimental setup

In order to validate the effect of interaction between
acquisition and recognition of behaviors through observation,

two experiments are set up. One is that the learner does
not observe the behavior of other but tries to acquire shoot-
ing/passing behaviors by itself. The other is that the learner
observes the behavior of other and enhances the learning
of the behavior based on the estimated state value of the
observed behavior. In former experiment, the learner follows
the learning procedure:

1) 10 episodes for behavior learning by itself
2) evaluation of self-behavior performance
3) evaluation of behavior recognition performance
4) goto 1.

On the other hand, the later experiment, it follows :
1) 10 episodes for observation of the behavior of the other

2) 10 episodes for behavior learning by self-trials with
observed experience

3) evaluation of self-behavior performance
4) evaluation of behavior recognition performance
5) goto 1.

Fig. 8. Predefined positions on the soccer field for experiments

In both experiments, the learner follows ε-greedy method;
it follows the greedy policy with 90% probalibity and
takes a random action else. Performance of the behaviors
execution and recognition of observed behavior during the
learning time is evaluated every 10 learning episodes. The
performance of the behavior execution is success rate of
the behavior while the learner, the ball, and the teammate
are placed at a set of pre-defined positions. The one of the
behavior recognition is average length of period in which the
recognition reliability of the right behavior is larger than 80%
during the observation. The soccer field area is divided 3 by
3 and the center of the each area is a candidate of the position
of the ball, the learner, or the teammate as shown in Fig.8.
The performances are evaluated in all possible combinations
of the positions.

B. Recognition of Observed Behaviors

Before evaluating the performance of the behavior execu-
tion and behavior recognition of other during learning the
behavior, we briefly review how this system estimates the
values of behaviors and recognizes the observed behavior
after the observer has learned behaviors. When the observer
watches a behavior of the other, it recognizes the observed



Fig. 9. The cyan player observes the magenta player’s behavior of pushing
a ball to the cyan player

behavior based on repertoire of its own behaviors. Fig.9
shows one scene of the passing behavior in which the cyan
player observes the magenta player’s behavior of pushing
a ball to the cyan player. Figs.10 (a) and (b) show se-
quences of estimated values and reliabilities of the behaviors,
respectively. The line that indicates the passing behavior
keeps tendency of increasing value during the behavior in
this figures. This behavior is composed of behaviors of
approaching a ball and approaching the teammate again, then,
the line of approaching a ball goes up at the earlier stage
and the line of approaching the teammate goes up at the
later stage in Fig.10(a). All reliabilities start from 0.5 and
increase if the value goes up and decrease else. Even when
the value stays low, if it is increasing with small value, the
reliability of the behavior increases rapidly. The reliability of
the behavior of pushing a ball into the teammate reaches 1.0
at middle stage of the observed behavior. The performance
of observed behavior recognition is 76% here ,that means,
the period in which the reliability of passing behavior is over
80% is 76% during the observation.

C. Performance of Behavior Learning and Recognition

In this section, performances of the behavior execution and
behavior recognition during learning the behavior are shown.
Fig.11 shows 5 sequences of success rates of the passing

behavior during learning in cases of learning with/without
value update through observation. The success rate with
value update grows more rapidly than the one without obser-
vation feedback. Rapid learning is one of the most important
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Fig. 10. Sequence of estimated values and reliabilities during a behavior
of pushing a ball to the magenta player, red line : approaching a ball, green
line : approaching the goal, light blue line : passing, blue line : approaching
the other, magenta line : shooting

aspect for a real robot application. The success rate without
value update through observation sometimes could not reach
the goal of the behavior at the beginning of the learning
because there is no bias to lead the robot to learn appropriate
actions. On the other hand, the system with value update
through observation utilizes the observation to bootstrap the
learning even though it cannot read exact actions of observed
behavior.

5 sequences of recognition rates for observed passing
behavior shown in Fig.12 indicate a similar aspect with
the ones of success rates. The performance of the behavior
recognition depends on the learning performance. If the
learning system has not acquired data enough to estimate
state value of the behavior, it cannot perform well. The
learning system with value update with observed behavior
rapidly enables to recognize the behavior while the system
without value update based on the observation has to wait
to realize a good recognition performance until it estimates
good state value of the behavior by its own trials and errors.

Those figures show the importance of learning through
interaction between behavior acquisition and recognition of
observed behaviors.
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Fig. 11. Success rate of the passing behavior during learning with/without
observation of demonstrator’s behavior

V. CONCLUSION AND FUTURE WORK

Above, values are defined as behaviors, which are de-
fined by the achieved goals. The observer uses its own
value functions to recognize what the demonstrator will do.
Preliminary investigations in a similar context have been
done by Takahashi at el. [10] and they showed much better
robustness of behavior recognition than a typical method.
In this paper, unknown behaviors are also understood in
term of one’s own value function through learning based on
the estimated values derived from the observed behaviors.
Furthermore, value update through the observation enhances
not only the performance of behavior learning but also the
one of recognition of the observed behavior effectively.

As future work, the behavior recognition system can
be extended to generate internal rewards for coopera-
tive/competitive behaviors. If the observer can estimate the
value of the observed behavior, it might be possible to
recognize the other’s intention, therefore the observer not
only imitate the observed behavior but also learn cooper-
ative/competitive behaviors for the demonstrator according
to the estimated values. Internal rewards should be also
developed through observation while we assume that the
reward models of the behaviors are shared among robots
or other entities. Related works have proposed many types
of internal/intrinsic rewards for learning acceleration or de-
composition of long time-scale tasks. By cooping with the
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Fig. 12. Recognition rate of the passing behavior during learning
with/without observation of demonstrator’s behavior

proposed methods, developmental behavior acquisition will
be achieved on real robots in our daily life.
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