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Abstract. Both self-learning architecture (embedded structure) and ex-
plicit/implicit teaching from other agents (environmental design issue)
are necessary not only for one behavior learning but more seriously for
life-time behavior learning. This paper presents a method for a robot to
understand unfamiliar behavior shown by others through the collabora-
tion between behavior acquisition and recognition of observed behavior,
where the state value has an important role not simply for behavior
acquisition (reinforcement learning) but also for behavior recognition
(observation). That is, the state value updates can be accelerated by ob-
servation without real trials and errors while the learned values enrich
the recognition system since it is based on estimation of the state value
of the observed behavior. The validity of the proposed method is shown
by applying it to a dynamic environment where two robots play soccer.
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1 Introduction

Reinforcement learning has been studied well for motor skill learning and robot
behavior acquisition in both single and multi-agent environments. Especially, in
the multi-agent environment, observation of others make the behavior learning
rapid and therefore much more efficient [1–3]. Actually, it is desirable to acquire
various unfamiliar behavior with some instructions from others in real environ-
ment because of huge exploration space and enormous learning time to learn.
Therefore, behavior learning through observation has been more important. Un-
derstanding observed behavior does not mean simply following the trajectory of
an end-effector or joints of demonstrator. It means reading his/her intention, that
is, the goal of the observed behavior and finding a way how to achieve the goal
by oneself regardless of the difference of the trajectory. From a viewpoint of the
reinforcement learning framework, this means reading rewards of the observed
behavior and estimating sequence of the value through the observation.

Takahashi et al.[4] proposed a method of not only to learn and execute a
variety of behaviors but also to recognize behavior of others supposing that the
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observer has already acquired the values of all kinds of behaviors the observed
agent can do. The recognition means, in this paper, that the robot categorizes the
observed behavior to a set of its own behaviors acquired beforehand. The method
seamlessly combines behavior acquisition and recognition based on “state value”
in reinforcement learning scheme. Reinforcement learning generates not only an
appropriate behavior (a map from states to actions) to accomplish a given task
but also an utility of the behavior, an estimated discounted sum of rewards that
will be received in future while the robot is taking an appropriate policy. This
estimated discounted sum of reward is called “state value.” This value roughly
indicates closeness to the goal state of the given task if the robot receives a
positive reward when it reaches the goal and zero else, that is, if the agent
is getting closer to the goal, the value becomes higher. This suggests that the
observer may recognize which goal the observed agent likes to achieve if the value
of the corresponding task is going higher.

This paper proposes a novel method that enhances behavior acquisition and
recognition based on interaction between learning and observation of behaviors.
A robot learns its behaviors through not only trials and errors but also reading
rewards of the observed behaviors of others (including robots and humans). Fig.1
shows a rough idea of our proposed method. V (s) and V̂ (s) are the state value
updated by oneself and the state value estimated though observation, respec-
tively. Takahashi et al.[4] showed the capability of the proposed method mainly
in case that the observer has already acquired a number of behaviors to be
recognized beforehand. Their case study showed how this system recognizes ob-
served behaviors based on the state value functions of self-behaviors. This paper
shows how the estimated state value of observed behavior, V̂ (s), gives feedback
to learning and understanding unfamiliar observed behaviors and this feedback
loop enhances the performance of observed behavior recognition. The validity of
the proposed method is shown by applying it to a dynamic environment where
two robots play soccer.

Fig. 1. Interaction between Learning
and Observation of Behavior

Fig. 2. Robots with a human player in
a Soccer Field
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2 Experimental Setup and An Assumption

Fig.2 shows two robots, a human player and color-coded objects, e.g., an orange
ball, and a goal. The robot has an omni-directional camera on top. A simple
color image processing is applied in order to detect the color-coded objects and
players in real-time. The mobile platform is based on an omni-directional vehicle.
These two robots and the human play soccer such as dribbling a ball, kicking
it to a goal, passing a ball to the other, and so on. While playing with objects,
they watch each other, try to understand observed behaviors of the other, and
emulate them. In this paper, all experiments are done in computer simulation
environment due to space limitation.

A learning/recognizing robot assumes that all robots and even the human
player share reward models of the behaviors. For example, all robots and the
human player receive a positive reward when the ball is kicked into the goal. This
assumption is very natural as we assume that we share “value” with colleagues,
friends, or our family in our daily life.

3 Outline of the Mechanisms

3.1 Behavior Learning Based on Reinforcement Learning

An agent can discriminate a set S of distinct world states. The world is modeled
as a Markov process, making stochastic transitions based on its current state and
the action taken by the agent based on a policy π. The agent receives reward rt

at each step t. State value V π, the discounted sum of the reward received over
time under execution of policy π, will be calculated as follows:

V π =
∞∑

t=0

γtrt . (1)

In case that the agent receives a positive reward if it reaches a specified goal
and zero else, then, the state value increases if the agent follows a good policy
π. The agent updates its policy through trials and errors in order to receive
higher positive rewards in future. Analogously, as animals get closer to former
action sequences that led to goals, they are more likely to retry it. For further
details, please refer to the textbook of Sutton and Barto[5] or a survey of robot
learning[6].

Here we introduce model-based reinforcement learning method. A learning
module has a forward model which represents the state transition model and a
behavior learner which estimates the state-action value function based on the
forward model in a reinforcement learning manner. Each learning module has its
own state transition model. This model estimates the state transition probability
P̂a

ss′ for the triplet of state s, action a, and next state s′:

P̂a
ss′ = Pr{st+1 = s′|st = s, at = a} (2)
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Each module has a reward model R̂s, too:

R̂(s) = E{rt|st = s} (3)

All experiences (sequences of state-action-next state and reward) are simply
stored to estimate these models. Now we have the estimated state transition
probability P̂a

ss′ and the expected reward R̂s, then, an approximated state-action
value function Q(s, a) for a state action pair s and a is given by

Q(s, a) =
∑
s′

P̂a
ss′

[
R̂(s′) + γV (s′)

]
(4)

V (s) = max
a

Q(s, a) , (5)

where γ is a discount factor.

3.2 Modular Learning System

In order to observe/learn/execute a number of behaviors in parallel, we adopt
a modular learning system. Many modular architectures have been proposed so
far (for example [6]). Each module is responsible for learning to achieve a single
goal. One arbiter or a gate module is responsible for merging information from
the individual modules in order to derive a single action performed by the robot.

We prepare a number of behavior modules each of which adopts the behavior
learning method described in 3.1. The module is assigned to one goal-oriented
behavior and estimates one action value function Q(s, a). A module receives
a positive reward when it accomplishes the assigned behavior or zero reward
else. The behavior module has a controller that generates predictions of next
state values, selecting the action with the maximum value. The gating module
will then select one output from the inputs of the different behavior modules
according to the player’s intention.

The same behavior modules are used for the behavior recognition. Each be-
havior module estimates the state value based on the estimated state of the
observed demonstrator1 and calculates reliability of observed behavior, that is,
how likely the demonstrator is taking the behavior of the module. The details
are described in following sections.

3.3 Behavior Recognition based on Estimated Values

Each behavior module can estimate a state value of observed behavior at an
arbitrary time t to accomplish the specified task. An observer watches a demon-
strator’s behavior and maps the sensory information from an observer viewpoint
to a demonstrator’s one with a simple mapping of state variables. Fig.3 shows
1 For reasons of consistency, the term ”demonstrator” is used to describe any agent

from which an observer can learn, even if the demonstrator does not have an intention
to show its behavior to the observer.
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a simple example of this transformation. It detects color-coded objects on the
omni-directional image, calculates distances and directions of the objects in the
world coordinate of the observer, and shifts the axes so that the position of the
demonstrator comes to center of the demonstrator’s coordinate. Then it roughly
estimates the state information in the egocentric coordinate and the state of the
demonstrator. Every behavior module estimates a sequence of its state value
from the estimated state of the observed demonstrator and the system selects
modules which values are increasing. The learner tries to acquire a number of
behaviors shown in Table 1. The table also describes necessary state variables
shown in Fig.3 for each behavior. Each state variable is divided into 11 in order
to construct quantized state space. 4 actions are prepared to be selected by the
learning modules: Approaching the goal, approaching the teammate, going in
front of the ball while watching the goal, and going in front of the ball while
watching the teammate.

Table 1. List of behaviors learned by self and state variables for each behavior

Behavior State variables

Approaching a ball db

Approaching a goal dg

Approaching the teammate dr

Shooting a ball db, dg, θbg

Passing a ball db, dr, θbr

Fig. 3. Estimation of view of the demonstrator. Left : a captured image the of observer,
Center : object detection and state variables for self, Right : estimation of view of the
demonstrator

While an observer watches a demonstrator’s behavior, it uses the same be-
havior modules for recognition of observed behavior as shown in Fig.??. Each
behavior module estimates the state value based on the estimated state of the
observed demonstrator and sends it to the selector. The selector watches the se-
quence of the state values and selects a set of possible behavior modules of which
state values are going up as a set of behaviors the demonstrator is currently tak-
ing. As mentioned before, if the state value goes up during a behavior, it means
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that the module is valid for explaining the behavior. The observed behavior is
recognized by a set of behaviors whose modules’ values are increasing.

Here we define reliability g that indicates how much the observed behavior
would be reasonable to be recognized as a behavior

g =

 g + β if Vt − Vt−1 > 0 and g < 1
g if Vt − Vt−1 = 0
g − β if Vt − Vt−1 < 0 and g > 0 ,

where β is an update parameter, and 0.1 in this paper. This equation indicates
that the reliability g will become large if the estimated utility rises up and it
will become low when the estimated utility goes down. Another condition is to
keep g value from 0 to 1.

3.4 Learning by Observation

In the previous section, behavior recognition system based on state value of its
own behavior is described. This system shows robust recognition of observed
behavior[7] only when the behavior to be recognized has been well-learned be-
forehand. If the behavior is under learning, then, the recognition system is not
able to show good recognition performance at beginning. The trajectory of the
observed behavior can be a bias for learning behavior and might enhance the
behavior learning based on the trajectory. The observer cannot watch actions
of observed behavior directly and can only estimate the sequence of the state of
the observed robot. Let so

t be the estimated state of the observed robot at time
t. Then, the estimated state value V̂ o of the observed behavior can be calculated
as below:

V̂ o(s) =
∑
s′

P̂o
ss′

[
R̂(s′) + γV o(s′)

]
(6)

where P̂o
ss′ is state transition probability estimated from the behavior observa-

tion. This state value function V̂ o can be used for can be used as a bias of the
state value function of the learner V . The learner updates its state-action value
function Q(s, a) during trials and errors based on the estimated state value of
observed behavior V̂ o as below:

Q(s, a) =
∑
s′

P̂a
ss′

[
R̂(s′) + γV ′(s′)

]
(7)

while

V ′(s) =
{

V (s) if V (s) > V̂ o(s)
V̂ o(s) else

This is a normal update equation as shown in (4) except using V ′(s). The update
system switches the state value of the next state s′ between the state value of
own learning behavior V (s′) and the one of the observed behavior V̂ o(s′). It
takes V (s′) if the state value of own learning behavior V (s′) is bigger than
the one of the observed behavior V̂ o(s′), V̂ o(s′) else. This means the state value
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update system takes V̂ o(s′) if the learner does not estimate the state value V (s′)
because of lack of experience at the state s′ from which it reaches to the goal of
the behavior. V̂ o(s′) becomes a bias for reinforcing the action a from the state
s even though the state value of its own behavior V (s′) is small so that it leads
the learner to explore the space near to the goal state of the behavior effectively.

A demonstrator is supposed to show a number of behaviors which are not
informed directly to the observer. In order to update the estimate values of
the behavior the demonstrator is taking, the observer has to estimate which
behavior the demonstrator is taking correctly. If the observer waits to learn some
specific behavior by observation until it becomes able to recognize the observed
behavior well, bootstrap of leaning unfamiliar behaviors by observation cannot
be expected. Therefore, two strategies of updating value functions of observed
behaivors here:

– update all value functions of observed behaviors (V̂ o(s′)) based on all ob-
served trajectories

– update value functions of observed behaviors with high reliability using his-
tory of the observed trajectories

The former strategy contributes to propagate values/rewards to the neiboring
state. Even if the observed behavior does not match the expected behavior, the
state transition through the observation gives rough hints on distances between
states that help to develop rough state values of behaviors. The latter strategy
enhances to estimate appropriate values of the observed behavior. This directly
contributes to bootstrap learning of the behavior. The former strategy some-
times produces wrong state value estimation and the latter strategy corrects the
estimation based on appropriate state transition of the behaviors.

4 Behavior Learning by Observation

4.1 Experimental setup

In order to validate the effect of interaction between acquisition and recogni-
tion of behaviors through observation, two experiments are set up. One is that
the learner does not observe the behavior of other but tries to acquire shoot-
ing/passing behaviors by itself. The other is that the learner observes the behav-
ior of other and enhances the learning of the behavior based on the estimated
state value of the observed behavior. In former experiment, the learner follows
the learning procedure:

1. 10 episodes for behavior learning by itself
2. evaluation of self-behavior performance
3. evaluation of behavior recognition performance
4. goto 1.

On the other hand, the later experiment, it follows :

1. 10 episodes for observation of the behavior of the other
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2. 10 episodes for behavior learning by self-trials with observed experience
3. evaluation of self-behavior performance
4. evaluation of behavior recognition performance
5. goto 1.

The both learners attempt to acquire behaviors listed in Table 1. The demon-
strator shows the behavior one by one but the observer does not know which
behavior the demonstrator is taking. In both experiments, the learner follows
ε-greedy method; it follows the greedy policy with 80% probalibity and takes
a random action else. Performance of the behaviors execution and recognition
of observed behavior during the learning time is evaluated every 10 learning
episodes. The performance of the behavior execution is success rate of the be-
havior while the learner, the ball, and the teammate are placed at a set of
pre-defined positions. The one of the behavior recognition is average length of
period in which the recognition reliability of the right behavior is larger than
70% during the observation. The soccer field area is divided 3 by 3 and the cen-
ter of the each area is a candidate of the position of the ball, the learner, or the
teammate. The performances are evaluated in all possible combinations of the
positions.

4.2 Recognition of Observed Behaviors

Before evaluating the performance of the behavior execution and behavior recog-
nition of other during learning the behavior, we briefly review how this system
estimates the values of behaviors and recognizes the observed behavior after the
observer has learned behaviors. When the observer watches a behavior of the
other, it recognizes the observed behavior based on repertoire of its own behav-
iors. Figs.4 (a) and (b) show sequences of estimated values and reliabilities of
the behaviors, respectively. The line that indicates the passing behavior keeps
tendency of increasing value during the behavior in this figures. This behavior
is composed of behaviors of approaching a ball and approaching the teammate
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Fig. 4. Sequence of estimated values and reliabilities during a behavior of pushing a
ball to the magenta player, red line : approaching a ball, green line : approaching the
goal, light blue line : passing, blue line : approaching the other, magenta line : shooting
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again, then, the line of approaching a ball goes up at the earlier stage and the
line of approaching the teammate goes up at the later stage in Fig.4(a). All
reliabilities start from 0.5 and increase if the value goes up and decrease else.
Even when the value stays low, if it is increasing with small value, the reliability
of the behavior increases rapidly. The reliability of the behavior of pushing a
ball into the teammate reaches 1.0 at middle stage of the observed behavior.
The performance of observed behavior recognition is 85% here ,that means, the
period in which the reliability of passing behavior is over 70% is 85% during the
observation.

4.3 Performance of Behavior Learning and Recognition

In this section, performances of the behavior execution and behavior recognition
during learning the behavior are shown. Fig.5 shows success rates of the behav-
iors and their variances during learning in cases of learning with/without value
update through observation. The success rates with value update of all kinds
of behaviors grows more rapidly than the one without observation feedback.
Rapid learning is one of the most important aspect for a real robot application.
The success rate without value update through observation sometimes could not
reach the goal of the behavior at the beginning of the learning because there is
no bias to lead the robot to learn appropriate actions. This is the reason why
the variances of the rate is big. On the other hand, the system with value up-
date through observation utilizes the observation to bootstrap the learning even
though it cannot read exact actions of observed behavior.

Recognition rates for observed behaviors and their variances shown in Fig.6
indicate a similar aspect with the ones of success rates. The performance of the
behavior recognition depends on the learning performance. If the learning system
has not acquired data enough to estimate state value of the behavior, it cannot
perform well. The learning system with value update with observed behavior
rapidly enables to recognize the behavior while the system without value update
based on the observation has to wait to realize a good recognition performance
until it estimates good state value of the behavior by its own trials and errors.
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Fig. 5. Success rate of the behaviors during learning with/without observation of
demonstrator’s behavior
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Fig. 6. Recognition rate of the behaviors during learning with/without observation of
demonstrator’s behavior

Those figures show the importance of learning through interaction between
behavior acquisition and recognition of observed behaviors.

5 Conclusion

Above, values are defined as behaviors, which are defined by the achieved goals.
The observer uses its own value functions to recognize what the demonstrator will
do. Preliminary investigations in a similar context have been done by Takahashi
at el. [7] and they showed much better robustness of behavior recognition than
a typical method. In this paper, unknown behaviors are also understood in term
of one’s own value function through learning based on the estimated values
derived from the observed behaviors. Furthermore, value update through the
observation enhances not only the performance of behavior learning but also the
one of recognition of the observed behavior effectively.
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