顔特徴量の発見と選好性の獲得

渡辺 絢子 1) 荻野 正樹 2) 浅田 稔 1),2)

1) 大阪大学大学院工学研究科 知能·機能創成工学専攻

2) JST ERATO 浅田共創知能システムプロジェクト

1. 背景と目的

コミュニケーションにおいて顔や眼の表情を識別 し、それに応じて行動することは極めて重要である. 健常者は眼周辺の画像のみから他者の感情を判別で きるが、自閉症児はそれが困難である[1].相手の意 思や感情を顔や眼から推測するためには、相手の顔 や眼を注視し視覚パターンの違いを検出すること、 そしてその視覚パターンが示す意味に関する知識が 必要である.生後2ヶ月にはヒトの顔への視覚的選 好性が見られることから、人間の顔パターンのカテ ゴリ化とその意味は乳児期初期に獲得されると考え られる.しかし生後間もない期間にどのように学習 が進むのかは明らかでない.

コミュニケーション機能に障害がある自閉症児に 対しては、強化学習による療育が行われている.他 者の顔や眼への注視行動を教える場合には、療育者 と子どものインタラクションの場面で、子どもが療 育者の顔や眼を見た時に報酬を与えて行動を強化す る.強化のスケジュールを変えることで、例えば何 かを要求したいときに他者の顔や眼を見るといった 非言語コミュニケーション行動を示すようになる.

こうした療育における自閉症児の学習過程はまだ 明らかでないが,自閉症児は顔や眼という視覚パタ ーンのカテゴリと,それが報酬を得られるものであ るという意味を学習している可能性がある.そして 報酬を得たい時に相手の顔や眼を注視する行動が可 能になると考えられる.

本研究では、自閉症児への療育におけるインタラ クションをモデル化し、ロボットに視覚パターンを 学習させる.そして強化学習により、顔に関する知 識がない初期状態からでも視覚パターンのカテゴリ 化とその意味付けが可能であることを示す.

2. 方法・結果

ロボットの全体システムを Fig, 1 に示す. 視覚パ ターンの学習には, 視覚パターンの場所や大きさに 依らない手法を用いた. インタラクションの性質か ら,「報酬を得られていない時」と「報酬を得られた 時」の画像をそれぞれ記憶し,「報酬を得られた時」 の画像群に特別に含まれる視覚パターンを抽出した. そして, その得られた視覚パターンに「報酬」を用 いて意味づけすることにより, ロボットはその視覚 パターンに対しよく注視を行うようになった.

さらに、ロボットは顕著性と学習した視覚パター ンによって注視点を決定した.自閉症児は健常児に 比べて動き情報で注視点を移動させる頻度が少ない こと[2]から、顕著度のパラメータを変更し、動き情 報の利用の有無について注視システムを変化させ、 視覚パターンについての学習結果を比較した.この 結果,注視点移動における動き情報の利用が、人間 についての学習を促進させる可能性が示唆された.

[1] Simon Baron-Choen (三宅真砂子 訳). 共感する女脳、シス テム化する男脳、日本放送協会、2005.

[2] Frederick Shic et al. Measuring Context: The Gaze Patterns of Children with Autism Evaluated from the Bottom-Up. *ICDL*. 2007.

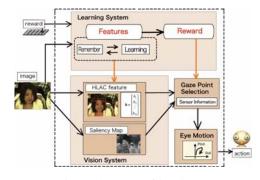


Fig. 1 The system of the robot