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Acquisition of the head-centered peri-personal
spatial representation found in VIP neuron

Sawa Fuke, Masaki Ogino, and Minoru Asada

Abstract—Both body and visuo-spatial representations are
supposed to be gradually acquired during the developmental
process as described in cognitive and brain sciences. A typical
example is face representation in a neuron (found in the adjacent
ventral intraparietal (in short, VIP) area) of which the function
is not only to code for the location of visual stimuli in the head-
centered reference frame but also to connect visual sensation
with tactile sensation. This paper presents a model that enables
a robot to acquire such representation. The proprioception of arm
posture is utilized as reference data through the ”hand regard
behavior”, that is, the robot moves its hand in front of its face,
and self organizing map (SOM) and Hebbian learning methods
are applied. The simulation results are shown and discussions on
the limitation of the current model and future issues are given.

Index Terms—Body representation, VIP neuron, Sensor fusion,
Learning and adaptive system

I. INTRODUCTION

Acquiring body representation is the most fundamental issue
not only for robotics, in order to accomplish different kinds
of tasks, but also for cognitive and brain sciences and related
disciplines, since how humans acquire such representation
is one of the great unresolved issues of human cognitive
development. General consensus of body representation is
roughly categorized into two types: ”body schema,” an un-
conscious neural map in which multi-modal sensory data are
unified, and ”body image,” an explicit mental representation
of the body and its functions [1][2]. The body representations
in biological systems are apparently flexible and acquired
by spatio-temporal integration of different information from
different sensory modalities (ex., [3],[4]).

Among different modalities, vision is the most representa-
tive spatial perception that is expressed in various kinds of
reference frames in different brain regions. A typical example
is that the visual stimulus of a target is perceived in a
retinotopic manner [5]. On the other hand, the adjacent ventral
intraparietal (in short, VIP) area includes neurons which
encode bimodal sensory information in a head-centered space
coordinate system [6][7][8]. They are supposed to play an
important role for the avoidance of obstacles and projectiles.
Not only tactile stimuli on the face but surprisingly also
visual stimuli, whose locations can be expressed in a head-
centered reference frame regardless of ocular angles, can
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activate these neurons. Figure 1 shows examples of the visual
and somatosensory receptive fields of the same neuron, which
are not affected by gaze directions.
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Fig. 1. Visual and somatosensory receptive fields of neurons in VIP. The
same VIP neuron is activated when something is shown on the screen’s shaded
area in front of the monkey and when the face’s shaded area is stimulated
regardless of where the monkey is fixating (adapted from Figure 1 in [6]).

We may hypothesize that in the brain the locations of visual
stimuli on the retina are transformed to the locations in the
abstract reference frames by integrating them with the pro-
prioception (ex. neck and ocular angles) and associated with
other sensor information (ex. tactile sense). Intriguingly, it is
suggested that not only the body image (schema), but also this
transformation system between reference frames in the visuo-
space is also adaptively acquired through experiences (ex. [9]).
However, the way humans acquire such representations in the
brain in spite of the changes in body structures and sensitivities
has remained an issue to be revealed.

A number of synthetic approaches aiming at understanding
the acquisition process of body and visuo-spatial represen-
tation in humans have been attempted in cognitive develop-
mental robotics [10], where the self-body or body parts are
found or identified based on invariance in the sensor data [11],
synchronization of motion and perception [12][13], Jacobian
estimation [14], and reference frame transformation [15]. In
these studies, the representation of invisible body parts such
as a face or a back cannot be acquired because the robot
cannot detect the visual information of the surface directly
with their own cameras. Fuke et al. [16] proposed a model
that acquired the body representation of a robot’s invisible
face by estimating its hand position from the change of the
proprioception while touching its own face. However, these
studies assumed that camera positions are fixed or that the
coordinate system in visual space is given by the designer.

As a learning model of visuo-spatial representation, Pouget
et al. [17] proposed an approach based on a neural network
with statistically distributed input data so that multi-modal
sensations can be integrated. However, they have not discussed
what kind of information can be used to select the signals
pertaining to the same location of the target. In fact, as shown
in Figure 2, adult humans can recognize that a stationary object
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is located in the same position though ocular angles and retina
image are different when we detect it in the peripheral visual
field.

Aiming at revealing the above issue, through the process
of mutual feedback between hypothesis generation and its
verification, here we propose a learning model in which a
robot acquires not only the head-centered reference frame but
also the cross-modal representation of the face based on the
knowledge in neurophysiological and cognitive science, by
focusing on a ”hand regard” behavior that infants around 4-
months often show. Eventually, we hope that the properties
of acquired cross-modal representation are similar to the one
of VIP neurons found in neuroscience. The proprioception of
arm posture is utilized as reference data through the ”hand
regard” behavior, that is, the robot moves its hand in front of its
face, while self organizing map (SOM) and Hebbian learning
methods are applied. The SOM algorithm was proposed by
Kohonen [18] who suggested that cortical maps may self-
organize in a nearest-neighbor relationship. Based on this
assumption, Aflalo et al. [19] actually modeled motor cortex
topography using a Kohonen SOM and argued that their maps
resembled the actual maps obtained from the lateral motor
cortex of monkeys. Here, we used SOM for data compression.
The simulation results are shown and discussions on the
limitation of the current model and future issues are given.

Fig. 2. In these two situations, we humans can recognize that the red
objects locate at the same position though ocular angles and retina image
are different when we detect it in the peripheral visual field. Actually, when
we see something, there are many different sets of perceived information (ex.
ocular angles and retina image).

II. FINDINGS IN DEVELOPMENTAL SCIENCE CONCERNING
THE VISUO-SPATIAL REPRESENTATION

Observation study suggests that the visual abilities of human
infants develop dramatically from the age of 3 to 7 months
old. The 3-month-old infants tend to plan saccades based
on the retinocentric reference frame, ignoring the target shift
due to eye movements. On the other hand, the 7-month-old
infants do not ignore it [20]. This implies that human infants
do not seem to have the visuo-spatial representation within
certain reference frame systems from the beginning but acquire
it through their experiences while their strength of muscles,
and sensitivity and placement of sensory organs continue to
change. While these visual abilities develop, a typical infant
behavior called ”hand regard” [21] is observed. ”Hand regard”
is the phenomenon in which 3 or 4-month-old infants often
gaze at their own hands in front of their faces. Among
many interpretations of this phenomenon, Rizzolatti et al. [22]
suggest that it is probably to be ascribed to the necessity of
calibrating ”peri-personal space” (defined as the space within
reach of the arm [23]) around a body by combining the motor

and visual information. The VIP area in the parietal cortex
is known as the region that contains this peri-personal visuo-
spatial representation.

Considering these observations of infants, we propose a
learning model that starts from the retinocentric representa-
tion to head-centered representation through ”hand regard”
behavior as shown Table 1. Then, we approach the issue of
identifying what actual mechanism leads to the development
of the visuo-spatial representation develop in the infant’s brain.
In our simulation, a robot learns the association between the
tactile representation of the face and the learned visuo-spatial
representation which enables the robot to show the reflexive
behavior like the VIP neurons.

III. VIP NEURON MODEL
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Fig. 3. An overview of the proposed model

An overview of the proposed model is shown in Figure 3,
where two modules are involved. First, the robot acquires the
head-centered reference frame module. It has many sets of
ocular angles and the retinotopic images (camera images) that
are represented in the eye information space in Figure 3. In
order to construct a head-centered reference frame, the robot
associates the ocular angles and camera images by regarding
the proprioception of its own body (joint angles of the arm)
as the reference information.

Next, in the VIP module, the robot integrates the tactile
sensation with the patterns of visual stimuli computed in the
head-centered reference frame in the former trained module
when it touches its own face with its hand. Finally, the robot
can acquire the cross-modal representation of its own face.
The details of the robot simulator used and the details of
each module are given in the following sections A, B, and
C, respectively.

A. Robot simulator

In order to validate the model, computer simulations were
conducted with a dynamic simulator based on the method of
Featherstone [24]. The robot model used in this experiment
and its specifications are shown in Figure 4. It has arms with
five degrees of freedom. Furthermore, it has a binocular vision
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TABLE I
THE FINDINGS THAT SUPPORT THE CONDITIONS OF SIMULATION

Month Observed behavior (infant) Situation of the robot experiment
3 Saccadic movement in the retinocentric reference frame Perceiving ocular angles and camera image data

3,4 ”Hand regard” behavior Moving its own hand and watching it
7 Saccadic movement in the body-centered reference frame Integrating ocular angles and camera image data

system and each eye has two degrees of freedom (pan and
tilt). The left hand is colored red so that the robot can easily
detect its position in the camera image. Color range is tuned by
trial and error so that it cannot be influenced by illumination
changes caused by arm movements. There are tactile sensor
units on its face. A total of 108 (6 × 6 × 3) green points in
Figure 5(a) are given by the designer as reaching targets during
random hand movements and placed at 0.02[m] intervals in the
x, y, and z directions. The blue ball in Figure 5 (a) and (b)
represent the gaze point of the two eyes.
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Fig. 4. Robot model and its specifications used in the experiments

B. Head-centered reference frame module

1) Arm posture space: Five joint angles of the left arm
which are colored red in Figure 4 constitute the arm posture
space. First, the robot selects one of the green points in front
of the face randomly. The position of the selected point in
the global reference frame (3-D Cartesian reference frame)
is denoted as Xgreen and the hand position in the global
reference frame is denoted as Xhand. The following force
Fhand is applied to the center of the hand. Since the initial
position of the hand is near the waist, as shown in Figure 4,
and all joints between hand and shoulder are free (no force is
applied), an arm posture for each reaching target is uniquely
determined.

Fhand = a1(Xgreen − Xhand) (1)

where, a1 is a positive constant and set to 75[N/m] here. When
the hand reaches Xgreen, the robot selects other point again.

X

Y

Z

(a) The robot (b) Image space

Fig. 5. A simulation model:108 green points in (a) are given by the designer
as reaching targets during random hand movements and placed at 0.02[m]
intervals in the x, y, and z directions. The blue ball represents the gaze point
of the two eyes. (b) Image space is the actual camera image divided into
10 × 10 units. The winner unit is the one in which the center of the hand is
included.

Here, we focus on a self-organizing map (SOM) [18]
algorithm to compress the data. The joint angle data are
recorded and used as training data to construct the SOM as
an arm posture space.

There is a representive vector for each unit of the arm
posture space. The representive vector Θi for the i-th unit
is

Θi = (θi
1, θ

i
2, ..., θ

i
n). (2)

where n is the number of joint angles (here, n = 5). When
the current arm posture Θ is given,

Θ = (θ1, θ2, ..., θn), (3)

the mapping for the i-th unit on the space is updated depending
on the distance from the winner carm-th unit,

∆Θi = κ(t) exp(−∥i − carm∥/γ)(Θ − Θi), (4)

carm = arg min
i

∥Θ − Θi∥. (5)

κ(t) and γ are a learning rate that decays as the learning
proceeds and a scaling factor, respectively. For example, in
this case, κ(t) is computed as following,

κ(t) = 0.4 × exp(1.0 − t/500), (6)

and the γ is set to 0.01. The size of the SOM is 10×10 and the
learned map is shown in Figure 6 (a). The number of learning
steps is 500. The map holds the similar representative vectors
in neighboring units.

After learning, in each step, the Euclidean distance between
the representative vector of the i-th unit and the actual arm
posture is calculated. Then, using the winner unit (here the
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carm-th unit) with the smallest Euclidean distance, activity
αarm

i of the i-th unit is given by

αarm
i = e−β(darm

i )2 , (7)

darm
i = ∥Θi − Θcarm∥. (8)

(a) Arm posture space

(b) Ocular angle space

Fig. 6. Acquired maps of arm posture space and ocular angle space

2) Ocular angle space: To collect the sets of the ocular
angles and the location of the visual stimuli in the camera
image, the robot records the ocular angles (pan-tilt angles of
each eye) while simultaneously recording the arm joint angles.
First, the position Xfixate in the global reference frame is
defined as

Xfixate = Xhand + a2R, (9)

Xfixate = (Xfixatex,Xfixatey,Xfixatez), (10)

R = (Rx,Ry,Rz). (11)

Rx and Ry are selected among the values from -1 to 1
randomly. Rz equals to 0 and a2 is 0.05. We adopt this random
noise R in order to duplicate a behavior of infants who cannot
move eyeballs toward an object correctly. We denote the vector

of the actual ocular angles Φ and the position of eyes on the
face (XReye,XLeye) are given by:

Φ = (φright−pan, φright−tilt, φleft−pan, φleft−tilt), (12)

XReye = (XReyex,XReyey,XReyez), and (13)

XLeye = (XLeyex,XLeyey,XLeyez). (14)

Then, ocular angles are given by:

φright−pan = arctan(
Xfixatex − XReyex

Xfixatez − XReyez
), (15)

φright−tilt = arcsin(
Xfixatey − XReyey

∥Xfixate − XReye∥
), (16)

φleft−pan = arctan(
Xfixatex − XLeyex

Xfixatez − XLeyez
), and (17)

φleft−tilt = arcsin(
Xfixatey − XLeyey

∥Xfixate − XLeye∥
). (18)

On the other hand, the robot cannot move its eyeballs to
an object voluntarily based on the positions in the camera
reference frame, which is the same situation as infants.

Xfixate

Xhand

XReye XLeye

a2R

X

Z

Y

Fig. 7. Variables for the calculation of ocular angles

Recorded ocular data are used as training data to construct
a SOM and the size is 15× 15 as shown in Figure 6 (b). The
number of learning steps is 1,000. After training, the winner
unit, whose ID is ceye, is computed in the same manner as for
the arm posture space:

ceye = arg min
i

∥Φ − Φi∥, (19)

where the representative vector is given by:

Φi = (φi
right−pan, φi

right−tilt, φ
i
left−pan, φi

left−tilt). (20)

3) Image space: While recording the ocular data, the
robot simultaneously detects its hand position in the camera
reference frame. The right(left)-eye image space is the actual
camera image divided into 10 × 10 units as shown in Figure
5(b). The winner unit whose ID is crightimage(cleftimage) is
the one in which the center of the hand area is included.
We adopt the demarcated parts instead of coordinates in the
camera image in order to decrease the amount of information
to deal with.
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4) Eye information space: In the next step, the eye infor-
mation space is prepared to combine the activating patterns in
the three spaces of the ocular angle space, the right-eye space,
and the left-eye image space. A SOM [18] is constructed by
utilizing the IDs of the winner units in these three spaces,
C = (ceye, crightimage, cleftimage), as the representative vec-
tor in the same way shown in subsection B.1). The size is
20×20 and the number of learning steps is 1,000. The winner
unit whose ID of this space is denoted as ceyeinfo and the
activity αeyeinfo

i of the eye information space are defined in
the same manner as Eqs. (7) and (8).

5) Head-centered visual space: Finally, in the head-
centered visual space, the robot learns the association of
these combinations of ocular angles and image information
to code the same location in the head-centered reference
frame by using the proprioception (arm joint angles) as a
reference information. The units of the head-centered visual
space connect to the units of the arm posture space in a one-to-
one correspondence. Then, activity αspace

i of the head-centered
visual space is

αspace
i = αarm

i . (21)

The robot hand is moved toward the green points and its
gaze point around the hand in the same way as learning the
ocular angle space and arm posture space in subsections B.1)
and 2). Meanwhile the robot learns the association between
head-centered space and the eye information space based on
Hebbian learning [25] which is modeled after the synaptic
connections in the brain. It is basically an unsupervised train-
ing algorithm in which the strength of a connection (weight
between units) is increased if both neurons (units) are active
at the same time. The original hebbian rule itself has no
mechanism for connection weights to get weaker and no upper
bound for how strong they can get and is therefore unstable.
Therefore some modified approaches were suggested. In this
model, we use Von Der Malsburg’s method [26] that maintains
a constant integration of all connection strengths to the same
neuron through normalization.

All units of two spaces are connected to each other and the
connection weight between the i-th unit in the eye information
space and the j-th unit in the head-centered visual space,
wspace

ij , is updated based on Eqs. (22)-(24):

w̄space
ij (t + 1) =

wspace
ij (t + 1)∑N1

j=0 wspace
ij (t + 1)

, (22)

where

wspace
ij (t + 1) = wspace

ij (t) + ∆wspace
ij , and (23)

∆wspace
ij = ϵ1α

space
i αeyeinfo

j . (24)

N1 and ϵ1 are the number of units of the head-centered
visual space (here, 100) and a learning rate (here, 0.2),
respectively. After learning this association, the robot records
the cact−space-th unit that is most strongly connected to the
ceyeinfo-th unit.

C. VIP module

In the VIP module, the robot integrates the tactile stimuli
of the face and the visual stimuli that are specified in the
head-centered reference frame through tactile experience.

1) Visual trajectory space: This space is prepared for clas-
sifying the historical data of approaching visual stimuli whose
positions can be computed in the head-centered reference
module. First, the robot repeatedly moves its hand toward a
random position on the surface of its face from the front.
In this case, the gaze point is moved in the same way as
before. At that time, the robot computes cact−space that has
the strongest connection to ceyeinfo by using the input data
of the ocular angles and the positions in the camera reference
frame in every step. Then, the trajectory of the last three steps
(cact−space(t−2), cact−space(t−1), cact−space(t)) is achieved
and used as the representative vector to construct another SOM
(visual trajectory space). t is the time when the hand gets
within 0.02[m] of the face. The size of the map is 10 × 10.

After acquiring SOM, activity αtraj
i of the visual trajectory

space is calculated when the hand touches the face.
2) Tactile space: The sensor units on the surface of the

face correspond to units in tactile space. If the robot perceives
tactile stimuli within period tconst after t, the ID of the actual
activated ctac-th unit in the tactile space is recorded as a
winner unit. Additionally, the activity of the i-th unit of tactile
space is calculated based on ctac:

αtac
i = e−ζ(dtac

i )2 , (25)

dtac
i = ∥i − ctac∥. (26)

3) Integration (VIP) space: In this case, the tactile space
units are connected to those in the integration (VIP) space as
a one-to-one correspondence. Activity αvip

i in the latter space
is given by:

αvip
i = αtac

i . (27)

The robot learns the association between the visual trajectory
space and the integration (VIP) space based on Hebbian
learning. The connection weight between the i-th unit in the
visual trajectory space and the j-th unit in the integration (VIP)
space, wvip

ij , is updated based on Eqs. (28)-(30):

w̄ij
vip(t + 1) =

wvip
ij (t + 1)∑N2

i=0 wvip
ij (t + 1)

, (28)

where

wvip
ij (t + 1) = wvip

ij (t) + ∆wvip
ij , and (29)

∆wvip
ij = ϵ2α

traj
i αvip

j . (30)

N2 is the number of units of visual trajectory space and set
to 100. ϵ2 is the learning rate and set to 0.5.

Finally, by calculating the cact−vip-th unit that is most
strongly connected to ctraj-th unit, the robot can estimate the
tactile sensor units that are going to be hit by the hand.
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IV. EXPERIMENTAL RESULTS

A. Head-centered reference frame module

The proposed neural learning architecture described above
is applied to the simulation model. First, to evaluate the
learning maturation of Hebbian learning in the head-centered
visual space, the averaged variance of weights wspace

ij of the
connection between one unit of the eye information space and
all units of the head-centered visual space is calculated. In
this case, the robot learns the association between two spaces
when the hand touches a green point. Initially, one unit of the
former space is associated with all units of the latter space
equally: therefore the variance is still large. However during
learning, the stronger the connection becomes between one
unit of the former space and the appropriate unit of the latter
space, the smaller the averaged variance becomes.

The averaged position on the head-centered visual space, r̄i,
which is connected from the i-th unit of the eye information
space is calculated as

r̄i =

∑N1
j=1 wspace

ij rj∑N1
j=1 wspace

ij

, (31)

where rj denotes the position vector of the j-th unit on
the head-centered visual space. Furthermore, the variance of
connection weights, r̂i, is calculated as

(r̂i)2 =

∑N1
j=1 wspace

ij ∥rj − r̄i∥2∑N1
j=1 wspace

ij

. (32)

Then, the connection-weight evaluation is performed with

R1 =
∑N3

i=1 r̂i

N3
, (33)

where N3 is the number of units of eye information space and
set to 400. The result of 6000 steps during learning is shown
in Figure 8. As learning proceeds, the variance converges and
the connections between the units seem potentiated.
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Fig. 8. Variances of the weights during the Hebbian learning of the
association between the eye information and the head-centered visual spaces.

We also investigated how the robot adapts itself to situations
in which its hand position in the head-centered reference
frame is the same although the sets of ocular angles and
positions in the camera image are different as shown in
Figure 2. As indicated in Figure 9 (a), the robot places
its hand at the fixed point and moves its gazing point
for 300 steps as plotted with blue lines. Concretely speak-
ing, in each step, the robot calculates ceyeinfo using the
perceived sensation of ceye, crightimage, cleftimage that are
obtained from the actual gaze angles and camera images.
Then, in the head-centered visual space, cact−space is de-
termined. Moreover, by assigning the representative vector
Θcact−arm

= (θcact−arm

1 , ..., θ
cact−arm
n ) of the cact−arm-

th unit in the arm posture space that is interlinked to
cact−space to Eq. (34), the position of the hand Xcact−arm

=
(xcact−arm , ycact−arm , zcact−arm) in the global reference frame
(3-D Cartesian reference frame) is calculated as following,

Xcact−arm
= f(Θcact−arm

). (34)

where f is a function that transforms joint angles and link
lengths into the hand position in the global reference frame. It
is given just to examine the learning results by the designer.
In this case, the x, y, and z directions are shown in Figure
5(a). In order to investigate how the learning proceeds over
the time, the robot records the connection weight values at
learning steps = 1000, 2000, 3000, and 6000. Then, after
learning, we make the robot compute cact−space and the hand
positions Xcact−arm subsequently based on these four recorded
connection weight values. In each step, the moving average of
Xcact−arm

in the last four steps is computed and indicated as
the light blue point in Figures 9(b)-(e) and in Figure 10. The
robot can approximately recall the arm posture that resembles
the actual one from the ocular angles and the positions in
the camera image that are different from one observation to
another. As the learning proceeds, these estimated positions
seem to slowly converge to the hand position.

In addition, the histogram of differences (errors) between
Xcact−arm

and the positions of the actual hand in Figure
9(e) is shown in Figure 10. The average values of 300 errors
for the three directions are 0.01034[m](x axis), 0.01057[m](y),
and 0.01289[m](z), and the mean error of the z direction is
bigger than the others. One reason could be that the number
of units in the eye information space is insufficient to cover a
large amount of training data.

Finally, Xcact−arm
and the actual hand positions while the

hand is moved toward the green points in order are shown in
Figure 11, where the errors in z direction are bigger than the
others also in this case.

B. VIP module
To check the Hebbian learning maturation in the integration

(VIP) space, the averaged variance of the weights of the
connection between the one unit of the integration (VIP) space
and all units of the visual trajectory is computed in the same
manner as shown in the last section. The variances of 2,000
steps during learning are shown in Figure 12. As learning
proceeds, the connection between the units is evaluated to be
potentiated.
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ball) and light blue points show estimated hand positions.
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Fig. 10. Histogram of differences between actual and estimated hand
positions for Figure 8 (e)
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Fig. 12. Variances of the weights during the Hebbian learning of the
association between the VIP and the visual trajectory spaces

Next, we investigated whether the integration space of the
VIP module has the same function as VIP neurons themselves
and whether the robot can estimate the tactile units that are
going to be activated regardless of the positions of the gaze
point. In Figure 13(a), we placed the screen in front of the
robot as seen in the observation of monkeys in Figure 2 and
its center is the midpoint of the two eyes. The tactile sensor
units are located as indicated in Figure 13(b) on the surface of
the face. During the hand movement to the face as explained
before, we visualize the level of each weight using the green
color connected to the ctraj-th unit in the visual trajectory
space as shown in Figure 13(a), 14(III). They are compared
with visual and somatosensory receptive fields of VIP neurons.
The red arrow indicates the trajectory of the hand. In Figure 14

10° 40°

(a) Screen in front of the
face (b) Tactile sensor units

Fig. 13. (a) The robot moves its hand toward the face randomly and estimates
the position that is going to be activated by the contact by calculating the unit
that has a big weight value between the winner ctraj -th unit in the visual
trajectory space. The screen is placed in front of the face and the results are
compared with the finding of VIP neurons. (b) Tactile sensor units on the
face.

(I) and (II), some examples of two kinds of receptive fields that
VIP neurons have are shown. Moreover, Figures 14 (III) are
the activated tactile units at the time when the visual stimuli
(the own hand in this case) are shown in each visual receptive
field in (I). In Figure 14 (III-f), when the hand is moved toward
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the bottom of the right eye, an error is observed. However, the
robot can roughly estimate the tactile units that are going to
be activated regardless of the position of the gaze point as a
result. It seems that the area including the units that connects
strongly with the ctraj-th unit resembles the corresponding
tactile receptive field of the neuron. It could be mentioned
that the function of our VIP module is qualitatively similar to
actual VIP neurons.

10° 40°

(a)

(b)

(c)

(d)

(e)

(f)

(Ⅰ) (Ⅱ) (Ⅲ)

Fig. 14. (I)This square can be thought of as a screen placed in front of the face
as seen in Figure 12. On the square, the patch of orange color corresponds
to the visual receptive fields of VIP neurons. (II)The patch of blue color
corresponds to the somatosensory receptive field of the same neuron. (III)The
activated tactile units at that time when the visual stimuli (the own hand in
this case) are indicated in each visual receptive field in (I).

Furthermore, we investigate how the errors in estimating the
activating units are being reduced over learning time. The sev-
eral weight values, wvip

ij (t = 100, 300, 500, 1000, and2000)
are recorded in learning phase and used to compute cact−vip

while the robot is moving its hand toward the face randomly
for 200 steps. Figure 15 shows the histogram of the Euclidean
distances of the IDs (cact−vip and ctac) based on each weight
value. It appears the accuracy of estimation is enhanced
gradually as learning proceeds. Figure 16 (a) shows the final
result when utilizing the weight wvip

ij (2000). There are a few
errors and they probably happened because the training data of
the visual trajectory space, cact−space(t−2), cact−space(t−1),

and cact−space(t), were influenced by the errors of the head-
centered visual space. Another reason is suggested that the
robot sometimes loses sight of its hand by moving it outside
of the field of view while recording the trajectory. Then, we
did an experiment using only the proprioceptive input for VIP
module. For the robot, it might be able to ascertain whether
it is also possible to predict where the hand will hit without
visual information. As stated in the section III. B. 5), the units
of the head-centered visual space connect to the units of the
arm posture space in an one-to-one correspondence as,

cact−space(t) = carm(t). (35)

Therefore the visual trajectory space is retrained by calculating
the historical pattern of the winner carm units here. In this
way, the association between the visual trajectory space and
the integration (VIP) space and the active tactile units are
also estimated based on the activity determined by actual joint
angles originally. In this case, the histogram of distances of
IDs of the activated and estimated tactile units is shown in
Figure 16 (b). The accuracy of prediction is improved.
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These are histograms of differences between the actual activated and estimated
units of tactile space.
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Fig. 16. Histogram of differences between the actual activated and estimated
units of tactile space

V. CONCLUSION AND DISCUSSION

In this paper, we proposed a learning model in which the
visuo-spatial and body representations are acquired through
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”hand regard” behavior that can be observed in the human
developmental process. Consequently, the robot acquired a
form of perception in which the surrounding space is roughly
encoded in a head-centered reference frame. It can also
integrate the visual stimuli coded in this reference frame with
tactile stimuli on the face, and can acquire the representation
whose function is similar to that of VIP neurons by using
SOM and Hebbian learning hierarchically.

As a model of acquisition of facial multi-modal represen-
tation in cognitive developmental robotics, there is a method
that Fuke et al. [16] proposed so far. In that study, the robot
can learn the relative arrangement of tactile sensors on the
face. However, because the relationship between these tactile
sensors and stimuli in the surrounding space is not considered,
it is difficult to utilize the representation for motion generation
such as guiding head movements. On the other hand, the repre-
sentation in this study can be useful to estimate an approaching
object. In the future, avoidance behavior might be able to
be constructed based on it. In addition, by implementing this
method in existing studies, robots can acquire more practical
body representations. For example, Hikita et al [27] proposed
a method which enables a robot to associate a position of
an end effector (hand or tip of tools) in the camera image
with the proprioception of its arm. If this ”position” can be
represented in the head-centered reference frame (or body-
centered reference frame in the future) based on our method,
it is expected that the robot becomes able to detect the end
effectors in a wider area by using the eyeball and neck angles
effectively.

There are three issues that we should tackle in the future.
First, there are still some errors that can be seen in Figures
9 and 16. We are going to try to use other algorithm to
improve it. There is a possibility that normalizing rules of
Hebbian learning negatively affect the maturation. Therefore,
for example, we will try to apply the trace rule [28] that is a
modified Hebbian rule and changes synaptic weights according
to both the current firing rate and the firing rates to recently
observed stimuli. This enables neurons to learn to respond
similarly to the gradually transforming inputs it receives.

Secondly, we construct SOMs hierarchically and their sizes
are determined by trial and error. If the size is small, the
representive vectors become too generalized. Especially in
the case of the eye information space, it is not always true
that the hand positions in the space are next to each other
when the relative vectors of the units of the eye information
space are similar. If the size is too big, it is difficult for one
unit to encode the visuo-spatial representation as a cluster
like visual and tactile receptive fields of neurons. However,
it can be resolved by adjusting the parameter of the activity
of units in the spaces such as β. Then, sizes of SOMs have
to be examined carefully because there is a possibility that
it causes some errors. So far, we have not implemented an
algorithm to explore the most appropriate size to cluster the
data satisfactorily. However, when we try to scale up this
model to larger tactile spaces and other representations in other
kinds of reference frames in the future, it might still be an issue
how the sizes are optimized and vast amounts of data should
be compressed. We are working on a method in which the

robot can determine the size that is adequate enough to cover
all input data autonomously and, at the same time, consider
other algorithms for compression such as deep belief nets [29].

Finally, in the present study, a robot hand is moved in the
small space in front of the face by giving a force only to
the hand. Then, the arm postures that provide a hand position
is specified. On the other hand, if joint angles are randomly
selected, it is difficult to utilize them in order to represent the
same position. In case of human infants, before the hand regard
behavior starts to be observed, they tend to acquire some kinds
of motor primitives based on the physical interaction between
body and environment, and the effect of gravity. Thus, it is
highly probable that the actual infant hand position correlates
with the arm posture during hand regard behavior too. We
are going to discuss a relationship between the acquisition of
motor representation and visuo-spatial representation in the
next stage.

Next, not only to improve the model but also to understand
the human mechanism in more detail, it is also important to
approach the problem of how a robot can find the object that
it should pay attention to as reference information for the
acquisition of the head-centered or other reference frames. For
example, in our study, the proprioception of the arm was set
to be adopted as reference information by the designer. But, if
the robot is able to select an object in the surrounding space
as reference information autonomously based on an internal
attention mechanism, we can also discuss the acquisition of
visuo-spatial representation of extra-personal space. It might
be required that the robot can predict the change of the visual
information (optical flow) in the image from the ocular motor
information and have the memory system at that time.

As the main topic in this paper was first inspired by some
findings of humans, finally we try to compare functions of
each space in this model to those of some regions that are
found in the neurophysiological studies here. First, we pay
attention to some findings about LIP (lateral intraparietal) area
[30]. Andersen [31] found neurons in the monkey parietal
cortex area, LIP area, that combine three kinds of signals:
the position of the stimulus on the retina, the positions of
the eyes in the orbit and the neck angles. The LIP area
connects to the VIP area [32] and is reported to have both
eye-centered and head-centered visual receptive fields [33].
The head movement is not dealt with in our study, but, it
can be assumed that the eye information space corresponds
to the LIP area as shown in Figure 14. As mentioned in
the introduction, VIP area is known as the region that has
the ”peri-personal” visuo-spatial representation. The ”peri-
personal space” is defined as the space within reach of the arm
in the neurophysiological studies. Actually, it was revealed that
the visuospace is represented in different regions in the brain,
peri-personal space [23] and extra-personal space that is out of
reach of the arm [34] based on the findings of spatial neglect
syndromes. This peri-personal space is extended when the
subject uses a tool [35]. Rizolaatti et al. [36] also reported that
connection of this VIP area and the F4 area (the area of arm
representation) in the brain is important for that representation.
Thus, we also suppose that arm posture space corresponds to
the F4 area (the area of arm representation) and their claim
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might support our hypothesis in which the arm proprioceptive
information contribute to the construction of visuo-spatial
representation.
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