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a b s t r a c t

We describe the Harmonic Motion Description Protocol (HMDP), that can serve as a part in tools for rapid
prototyping of behaviors in a hybrid simulation real robot environment. In particular, we are focusing
on the RoboCup 3D Soccer Simulation League server that is currently evolving rapidly, and becomes a
more and more useful open source, general purpose simulation environment for physical Multiagent
systems. HMDP uses harmonic functions to describe motions. It allows for superposition of motions and
is therefore capable of describing parametric motions. Thus, typical open loop motions (walking on spot,
forward, turning, standing up) of small humanoid robots are readily available and can be optimized by
hand. In conjunction with the HMDP some software tools and a small real-time motion generator (called
Motion Machine) have been developed. The current implementation is very flexible to use and can easily
be implemented in rather small embedded systems.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Many developers of autonomous robot systems experience
difficulties when designing a control system that is at the same
time capable of high level sensor processing – in particular vision
sensors – andmotor control. This is particularly true for humanoid
robots that can have around 20 degrees of freedom. For advanced
systems (e.g. Honda’s Asimo or Sony’s Qrio robots) multitasking
real-time OS systems (often with several CPUs) are available,
that manage the entire sensor and actuator processing in real
time. Low cost designs usually lack the sensor processing and
are restricted to a remote controlled embedded CPU or even an
analogue system (e.g. RoboSapiens, [1]). These systems completely
lack autonomous behavior capabilities. For the medium to low
cost designs (for example in RoboCup [2,3], where autonomous
behaviors are demanded), the solution can be a hybrid design using
2 CPUs, one formotor control and one for sensor processing. On the
one hand the sensor data processing – in particular vision – is done
by a portable IBM-PC i386 like system with a custom broadband
multitasking operating system (Windows, Linux, BSD) that does
not have real-time capabilities (see for example [4–7]). The drivers
for cameras and other devices are cheap and do not need further
development. The motor control on the other hand is done by a
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micro-controller that performs pre-defined motion patterns. The
demanded motion pattern is communicated between both CPUs
by a serial pipe or bus system, sometimes wireless. In particular,
in humanoid robots, the motion control part has to be a real-time
system. Motion patterns such as standing up need to be precisely
executed in the range of a time-span of 100ms, in order to produce
a reliable performance. For this reason direct positional control
from the PC side should be avoided.
During the development process of the robot’s behavior

problems arise from this hybrid design. Whereas a PC-like system
is always accessible, ready for changes, the motor controller can
only be accessed via specialized editors and development tools,
debuggers etc. Changes of motor controller programs can only
be realized by flashing the limited memory that is available on
the controller board. The programming of the motor controller is
mostly done in C by using many custom definitions that depend
on the design features of the motor controller which vary in
dependence of the product line and the manufacturer. Moreover,
the real-time behavior is managed by a series of interrupts that
are again dependent on the type of the controller. Thus, for
prototyping, the development of motion patterns may turn out
to be a bottleneck, and developers may be reluctant to change a
workingmotion pattern. The problems can result in a development
process in which the motion patterns are developed separately
from the design of the overall behavior. This seems acceptable in
robot systems that do not require a big set of motions and do not
have many degrees of freedom.
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Fig. 1. Possible implementation of HMDP in a robot environment: Higher level
behaviors are processed in a Linux micro-PC (e.g. Geode). The PC sends motion
patterns over the serial bus to micro-controller. They are executed in real time.

In humanoid robots, however, this design principle is not really
satisfactory. This is particularly true for soccer playing humanoid
robots. Whereas humans have an infinite number of motion
patterns available, the typical number of motion patterns of robots
that participates, in the RoboCup competitions for instance is less
than10, e.g. strong kick, soft kick,walking, turn, several goal keeper
behaviors. A first step would be to allow for the activation of
several motion patterns at the same time. This can be used for
looking for the ball and walking forward independently in parallel.
Furthermore, it can be used to balance out perturbations from the
walking process. Thus, in addition to the normal walking process a
weak pattern can be added that can stabilize the walking motion.
For this purpose it is necessary that the exact phase relation
between both motion patterns is controllable.
This is one design policy for the protocol we present. The

actual HMDP protocol defines the communication between the
real-time motor controller and the PC-type vision- and behavior-
processing computer—initially via serial bus (of course all kinds
of other communication methods are possible, see also Fig. 1 for
an illustration). The software environment which we describe in
this work comprises also some tools for the motion design and
handling, and a real-time motion generation and management
system for the motion-controller CPU called Motion Machine. It
is designed to be small and as possible hardware independent as
possible.
In the robotics literature, some of the ideas that build

the foundation of our protocol have occurred before. We find
application of splines e.g. for trajectory generation of mobile
robots (see [10] for the case of controlling an all-wheel steering
robot, or [11] for an approach using a biped robot). Contrary to
other works, though, we only store the Fourier coefficients of the
motion splines and use these for motion generation in the micro-
controller. We do not store any sampled spline curves in order
to reduce communication load. The idea of control abstraction
for a more compact representation (one of the design criteria
for HMDP) of movements is realized with different methods, for
instance Fourier analysis for cyclic motion patterns as in [12]
or using hierarchical nonlinear principal component analysis
to generate high-dimensional motions from low-dimensional
input [13]. However, our main motivation for the creation of this
protocol was not only to represent motions in a compact way,
but also to address the issues concerning timing. Ideas related
to the superposition principle of different motions can be found
in [14]. There the pre-generated motions are analyzed and can
be mixed together in frequency space (for instance to create
smooth transitions). For this purpose an interpolation of Fourier
coefficients is used. A powerful motion editor for small humanoid
entertainment robots is described in [15]. In this work the created
joint trajectories for the different motions are finally exported into
files. These files contain control points and equations to interpolate
between them to generate the desiredmotions in real time. Finally,
a good overview of the general difficulties in motion planning for
humanoid robots – specifically within RoboCup – is given in [16].
With regard to the simulation of robots similar problems

arise from a different point of view. The RoboCup 3D Soccer
Simulation League underwent some profound changes during
the last several years. Currently realistic humanoid robots are
simulated (see Fig. 3 for a screen shot of the NAO simulation
in the official simulator called Simspark [17,9]). The motions of
all robots are communicated between the agent program and
the simulator as instantaneous updates of velocities of simulated
servos communicated via TCP/IP. The role of HMDP in this
framework can be to serve as an interface between the agent and
the simulator (cf. Fig. 2). The details of the current state of the
3D Soccer Simulation League are discussed in publications that
relate to the 3D2Real project [8,9]. The goal that is envisioned for
the 3D2Real project is to have the finals of the soccer simulation
league using real robots in the near future. For this ambitious goal
several steps are necessary in the next years to create the necessary
infrastructure and tools. According to the proposed roadmap in [8],
a technical challenge would be held at the RoboCup competitions
to test the ability to use the agent code of SSL participants on
a predetermined real robot. We propose also the development
of a central parts repository (CPR, see also [18]). This would be
a collection of real robot designs, sensor and actuator models,
complete robots, as well as controllers for certain architectures.
Fig. 2. Possible implementation of HMDP into a standardized software design and simulation environment (in this case 3D2Real [8]). The HMDP may serve at the same
time as an interface for abstract motion description between agent and simulator as well as between agent and robot (see also [9]). The abbreviations stand for 3D Soccer
Simulation League (SL), Soccer Humanoid League (HL); NAO is the name of the robot used in the new Standard Platform League. For details please see the above mentioned
publications.
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Fig. 3. A screen shot of the NAO soccer simulation in Simspark as used in the 3D
Soccer Simulation League at RoboCup 2008.

Participants of both Soccer Humanoid League (HL) and 3D Soccer
Simulation League (SSL) would contribute to this repository
according to their expertise and interest using a standard format.
The HMDP introduced in this work could be used as a standard

for the motion description of the simulated and the real robots. In
the simulation, the agents are connected to the simulator over the
network. This means that they have to sendmessages (currently in
ASCII strings) back to the simulator in order to specify, e.g., desired
positions for motors. Since many agents connect to the simulator
at once during a game this can lead to a high volume of network
traffic that can cause high computational load on the server. If
the HMDP was used for the description of motion patterns, longer
messages describing the motions would only have to be sent
sporadically when new patterns have to be set. Thus, the HMDP
would provide a good solution for very related problems in the 3D
soccer simulation league, and the humanoid league (as described in
the introduction), andmight eventually facilitate running the same
code on simulated and real humanoids.
In the following section we outline the required specifications

that follow from the motivations mentioned above. The syntax
of the HMDP as implemented in our software is then briefly
introduced. We describe the principle of superposition of motion,
its advantages and potential problems. To illustrate the work
with the protocol, we provide an example using an experimental
graphical user interface. We also report our experiences using the
protocol in a robot competition. Finally, we give an outlook on
closed loop control using HMDP and a possible extended role of
the HMDP inside the 3D2Real project and other projects, and close
with a discussion.

2. HMDP specifications

The HMDP specifications are:

• The HMDP includes messages that are submitted from the PC
(acting as master) to the micro-controller (acting as slave) and
response messages from the micro-controller to the PC.
• The protocol allows for the PC side to set the current time as an
integer and also to set the maximal time value after which the
current time on the micro-controller is set to zero again.
• The protocol defines motion patterns in terms of splines. In
order to allow for periodicmotion patterns that can be repeated
an arbitrary number of times the set of base functions is defined
as a set of sines and cosines.
Fig. 4. Motion superposition: By using HMDP two or more motions can be
superposed by defining the amplitudes Yi and the phase shift φi . The resulting
motion pattern is the sum of both initial patterns.

• The protocol activates motion patterns including the informa-
tion at what time the motion pattern is activated, and its am-
plitude. It also defines which step of the motion pattern is
assigned to what time step of the motion controller (motion
phase assignment).
• The design of the HMDP includes the management of the
motion patterns on the micro-controller side. It is possible to
activate several motion patterns at the same time. The resulting
motion pattern is the superposition (see Fig. 4) of all activated
motion patterns (motion superposition principle).
• The protocol allows us to read out values of sensors that are
connected to the micro-controller. In particular, it allows us to
read out the the angle of the servo positions at a particular time
step. The message for a sensor request consists of a vector of
a time at which the sensor value should be read out and the
name of the particular sensor. As soon as the time for read out is
reached, the time value, the sensor name, and the sensor value
are sent from the micro-controller to the PC.

3. Motion superposition

In this section we outline the principle with which motion
patterns can be expressed in terms of motion splines; how they
can be superimposed (cf. Fig. 4). The motion superposition is the
one way to design a new parametric motion out of two existing
motions. One key idea is to avoid to have any principle difference
between non-parametric and parametric motions. It is possible to
design all motions in a straightforward way for example in our
motion designer (cf. Fig. 7).
In addition, we use harmonic functions, that is sine and cosine

functions as a basis for our interpolation. Also, different sets of
basis are applicable (e.g. cubic splines, other polynomial splines
are possible). However, here we intended to use the same identical
set of basis functions for both periodic (and eternal) motions
(as mainly all possible types of walking) and non-periodic motions
(stand up, kick, etc.). In this context of non-periodic motions the
motion ends within the wavelength of one performance of the
motion. If an appropriate set of cosine and sine amplitudes is
chosen it is relatively simple to produce a smooth periodic motion.
In the following we discuss the harmonic motion splines for

a robot with A actuators. Currently, a simple position control
is implemented. We have spline functions that describe motion
patterns fp,a(t). These are expressed in terms of discrete finite
series of sine and cosine functions:
fp,a(t) = c0 +

∑
0≤n≤max

c2n+1,a sin(ρ ωn,p t)

+ c2n+2,a cos(ρ ωn,p t), (1)
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Fig. 5. Left: HMDP commands for different usages of the motion patterns. The PU command (for the HMDP syntax refer to [19]) can trigger a motion pattern with end. PY
triggers the motion pattern without giving a point in time for the end. The PP command is for testing and starts a motion pattern immediately without end. Right: Examples
for possible implementations of motion patterns. The third example is making use of the superposition principle.
whereρ = π
2N , 0 ≤ p < P is the index of the pattern and0 ≤ a < A

the index of the actuator. The set wave numbers ωn,p is specified
when the pattern is initialized. The designer of themotion chooses
the appropriate set of wave numbers – by hand in the GUI of the
tool – in order to get the best interpolation of the particular set
of postures. From the postures the coefficients ci are calculated.
As a convention of the current HMDP for a specific pattern p it is
identical for all actuators a.
The vector fp(t) = {f1,p . . . fa,p} expresses then the state vector

of the robot, i.e., the positions of all servos, given only the pattern
p is active with an amplitude of 1. The final position that is sent to
the servo is then:

F(t) =
∑
p<P

Rp(t)fp(t − φp) (2)

where the amplitude Rp(t) and the offset φp are transmitted
when the pattern is activated. Before the onset or change of the
amplitude of a motion pattern the value of the offset between the
motion onset and the time of the start of the motion φp, the – final
– amplitude of themotion pattern Ynew,p, and the start times Tstart0,
Tstart1 have to be transmitted (see Fig. 5), Rp(t) is then determined
by

t < Tstart0 : Rp(t) = Yold,p
t ∈ [Tstart0, Tstart1] : Rp(t) = (Ynew,p − Yold,p)/

(Tstart1 − Tstart0)× t
t > Tstart1 : Rp(t) = Ynew,p.

(3)

In other words the amplitude is changed in a linear way from
the previous value to the current value. However, the value of φp
changes at the time Tstart0.
The total motion of the control output according to Eq. (2) is

the superposition of all active motion patterns in their current
amplitude. The virtues of this superposition might not be directly
obvious in the general case. In the following we go into three
different examples (see Fig. 5) where the superposition of motion
patterns is useful.
First, examples for periodic movements: Independent move-

ments concern disjoint sets of actuators and are applied by simply
running both patterns at the same time.With respect to humanoid
robotics this can be done by looking for the ball—that is: moving
the head and walking at the same time. Both patterns can have
different wave numbers and can be applied completely indepen-
dent from each other. Here it is necessary that bothmovements do
not interfere with each other, for example, the joint control signal
should never collide under any circumstances. Also, it is only pos-
sible to have one pattern with dynamic effects on the whole body
of the robot active at any time. In the case of walking and look-
ing, only the walking would have an effect on the dynamic of the
whole body of the robot. The dynamic effects of the looking for the
ball should be negligible. This kind of combination is only possible
if bothmovements concern completely independent joints and one
movement pattern leaves the joint that concerns the other move-
ment in a default position.
The second example would be two movements at the same

frequency. Where the first movement is the default behavior
and second movement is a response of the control to some
perturbation. As an example, take vibrations duringwalking; these
can be damped by adding a regulatory movement on top of the
standard movement.
The third example would be parametric non-periodic move-

ments, like kicking. Here, the kicking direction can be superposed
to a standard kicking behavior. For a detailed description of these
examples see Section 5.

4. Implementation details

The real-time motion generation and management system
(Motion Machine, cf. Fig. 6) has been designed to be flexible with
respect to the hardware used, and independent from external
libraries. It uses its own self-defined float type, and can thus be
used in systems that are initially restricted to integer operations.
The Motion Machine is programmed in C. It consists of an input
parser and the core real-time motion generator that calculates the
control values as motion splines, as well as their superposition.
Currently theMotionMachine is running on a Philips/Renesas ARM
7 architecture (CPU type LPC 2148), which includes 512 Kb FLASH
memory and a total of 40 Kb SRAM. This type of micro-controller
exceeds the demands of theMotionMachine by far. Table 1 gives an
overview of the minimal demands and what is used in the current
implementation.
In addition the HMDP syntax was designed to be relatively easy

to parse.
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Fig. 6. Software architecture inside the motor controller (slave).

Table 1
Current implementation and expected minimal requirements for the Motion
Machine.

Current implementation Minimal requirement

Program binary 26 kB FLASH 26 kB
Motion pattern 2 kB (fixed) <2 kBa
Zero positions storage 2 kB ≈2 kB
Necessary RAM 12 kB 1–2 kB
a Depending on the number of coefficients.
The Motion Machine can be set into three distinct internal
states. Depending on the activated state, different groups of
commands have different effects. It is important to note that if a
command is used in the wrong state the real-time property may
be disrupted, the command may have an undesired effect, or no
effect at all.

• State 0: TheMotionMachine is de-activated and commands can
be directed towards the motors. Command groups 0, I can be
used.
• State 1: HMDP state. The Motion Machine is on and overwrites
motor commands (group I). Instead, the HMDP commands that
control the Motion Machine have to be used.
• State 2: ‘‘Plastic’’ state of the robot. The robot can be set
manually into a state, and keeps the current posture, while
changes in the current posture are possible by applying force to
the servos. This is achieved by letting the servos always enforce
the current position, that is read out at each timer interrupt. In
this way, the robot is able to keep postures better than that in
the state when the servos are turned off. The robot’s joints are
in a state that feels though still transformable like a medium
of high viscosity. The viscosity of the joints can be altered by
changing the gain of the servos. Fig. 7 is an example for amotion
that was designed by using a sequence of postures which were
modeled by using the state 2.

For designing motions a tool with a graphical interface (GUI)
was used (QMotion2motion editor, depicted in Fig. 7). The widgets
were designed by using the commercial cross-platform widget
library Qt [21]. The motion patterns are first described as a
sequence of postures from which the interpolation is calculated.
The postures themselves can be defined in two differentways. First
by moving sliders of the GUI, second by directly setting the robot
into the plastic mode and this defining the posture by handling
the robot (please confer [22] for a similar concept). The posture
can then be read out. The second way proved to be economic
for complicated movements like standing up. The motion editor
further allows for copying and pasting of motion parts, changing
states and changing the viscosity of the plastic state. In addition,
two motions can be active at the same time at two different phase
shifts, and thus the superposition of motions can be tested.
Fig. 7. Standing up motion designed by a tool to design HMDP motion patterns (screen shot). The screen shows in the top the activated frequencies of sines and cosine
functions that perform the motion interpolation (dots in purple). Below the resulting interpolated motion functions for selected joints. The time increases from left to right.
The first row depicts the left hip joint in roll direction, the second row the first left knee joint (robot type 4G [20] has 2 knee joints) and (half occluded) the motion of the
second left knee joint. Below: The resulting motion for standing up of the robots (8 subsequent stages of the motion). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Design of the walking motion which serves as a standard example for
superposition as motions: The complete walking motion is designed from three
motion patterns: Walking on spot (top), forward–backward (bottom) and a third
motion that is turning right or left. All walking motions of the robot can then be
achieved by an appropriate superposition of these three motions. For example a
typical moving forward motion can be made by mixing the walking on spot motion
with amplitude 1.0 with the forward–backward motion 0.05. Walking backward
can be achieved bymixingwalking on spotwith forward–backwardwith a negative
amplitude. In the case of backwardwalking better results can be achieved by adding
some leaning forward (another very simple motion).

5. Results and applications using HMDP

The HMDP has been used for the Team JEAP robots [23] during
the RoboCup 2007 competitions (for an overview of the RoboCup
Humanoid League see [24]), and proved to be practically applicable
there. All motions including walking in different ways, kicking,
leaning forward, looking upward, sideward, standing up etc. could
be designed in the described manner. The motions used in the
competition were entirely open loop motions. However, closed
loop approaches seem to be applicable in a useful way, see below.
Fig. 7 shows a part of themotion design tool where the standing up
motion as used during the RoboCup has been loaded. The standing
up motion proved to be one of the few motions where the exact
calibration is particularly essential. This might be caused by the
fact that the arms of the robots of type 4G [20] are relatively
short. The standing up motion is designed as a single motion and
does not make use of the motion superposition principle. Whereas
walking has been designed as the superposition of several motions
mixed together in order to achieve walking in different directions
(Fig. 8). The basic motion is walking on the spot. In addition, a
forward motion that is to shift the standing leg and swinging leg
backward and forward respectively. Finally, a turning motion. The
final walking could be further improved by adding a bit of leaning
forward to the walking motions. In this way the slip between feet
and ground could be reduced.

6. Summary and outlook

We presented here an environment for the design and
management of motions in small, medium priced humanoid
robots. We assume for our system that the robots use the hybrid
architecture of a non-real-time CPU for sensor processing and a
real-timemotion controller. Between these two CPUswe suggest a
standardized protocol that can also be used in robot simulations for
the communication between agent programs and the simulator. In
addition, we presented a tool formotion design using the proposed
protocol.
The advantage of the described method to previous designs is

that in comparison to streaming of robot posture information the
communication load can be reduced. At the same time motion
design and management are still highly flexible (all kinds of
parameter motions are possible). One important disadvantage to
a standard control program on the motor controller is that closed
loop approaches are more complicated to implement.
With regard to the outlook we focus in this section on two

points: How closed loop control can be applied and on the role
HMDP can serve in Simspark (RoboCup 3D soccer simulation
environment. It is planned to add the code there). Fig. 9 illustrates
both subjects. In the case of the closed loop control using HMDP
one may design a compensation motion pattern for a specific
expected perturbation (in the figure: healing pattern). At a specific
phase of the motion pattern the Motion Machine can trigger a
sensor reading. In the case of alarming sensor values the healing
Fig. 9. Possible design of closed control loop. Although due to the necessary communication between the slave and master via HMDP and the consequent relatively large
feedback delay the response (marked in red) can be set precisely in phase and fit together with the basic motion pattern (see Section 6). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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pattern can be activated in an appropriate amplitude. In this way
although the feedback delay may be relatively large, the reaction
precisely fits into the motion pattern.
The second point is that HMDP can serve as a standard interface

to communicate motions. As an example we implemented it into
the 3D soccer simulation server of the RoboCup competition. Itmay
servehere to reduce the bandwidth of the communication between
agents and the simulator. One reason for this idea is a problem
with the communication load that is currently necessary between
the agent and the simulation server during the game (the motion
patterns themselves can be transferred before the game). A rough
calculation of the load only for controlling motions gives a load of
several hundred kilobits (22 actuators × around 10 bytes control
code for each actuator command× the refresh rate).
From experiences with our real robot we know that it does not

make sense to change motion patterns that drive the robot more
than one time a second that would result in 50 bytes, one can
achieve a significant reduction of the communication load, while
the simulation is running, even if we assume that a motion pattern
is changed 5 times a second.
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