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Abstract

Physical causality is one of the most im-
portant knowledge that human babies learn
first after birth through interaction with the
surrounding environment. The properties of
object movement changes depending on the
situation, and so the agent should change its
prediction. This paper proposes a learning
model which predicts the movement of an at-
tended object depending on the environment
around the object. The predictor is formed by
three main layered associative modules: (a)
an environment module, which recognizes the
attended object and its surrounding environ-
ment; (b) a predictor module, which antici-
pates the movement of the attended object
depending on the surrounding environment;
(c) an attention module which implements
bottom-up and top-down attention processes.
The proposed method is applied to the robot,
and its prediction faculty and adaptability are
examined in the simulation and actual envi-
ronment.

1. Introduction

All infants are physicists. From the day of the birth,
they begin to learn the fundamental properties of the
world step by step through the interaction with the
surrounding environments. The one of the important
indices for their progress is ”object permanence”;
even when an attended object will be occluded from
the view by an obstacle, they can understand the
object will not be lost from the world and remain
behind obstacles. Although Piaget firstly proposed
that infants can acquire object permanence after
18 month old (Piaget, 1954), other researchers has
shown that infants can pass object permanence
task before one year old (Baillargeon et al., 1985)
(Baillargeon and DeVos, 1991). In developmen-
tal cognitive robotics, some learning models

are proposed to explain the results shown in
these experiments with more restricted facilities
(Schlesinger, 2003) (Lovett and Scasselatti, 2004).
Although an actual mechanism that enables an
infant to show these behaviors even in such a early
stage is still unknown, how such higher concepts
about the world as object continuity and impossibil-
ity can be learned autonomously is also an interesting
problem in a robot area (Fitzpatrick et al., 2008).
One of the fundamental faculties to realize the
higher concepts about the world is to model the
phenomena effectively for appropriate prediction.
In this paper, we propose a learning model that
enables a robot to learn the prediction of the object
movement depending on the situation. For this
purpose, multiple Restricted Boltzmann Machines
(RBMs) (Hinton et al., 2006) are adopted, which
can be used for both unsupervised and supervised
learnings.

Moreover, with this learning model we treat
the problem on the relationship between attention
and learning. Attention is thought to consist of
two processes; bottom-up and top-down attention
(Knudsen, 2007). Whereas bottom-up attention is
modeled well by the intrinsic features of the input
image, top-down attention is affected by the experi-
ence. So, what to be attended is affected by learn-
ing, on the other hand what is learned is affected by
attention. We set the attention level based on the
prediction error and how the attention level affects
to the learning.

2. Situation dependent predictor
with Restricted Boltzmann Ma-
chine

2.1 Overview

In order to realize a situation dependent predic-
tor, the prediction of the attended object should be
well merged with recognition of the environment.
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Figure 1: Overview of situation-dependent predictor

This is also an interesting problem as the model
of integration of two visual pathways (where path-
way and what pathway) in the brain, where ap-
propriate self-organization for information compres-
sion and integration should be realized. For that
purpose, we apply Restricted Boltzmann Machine
(RBM) (Hinton et al., 2006) because this network
model possesses good features as a building unit to
make a larger system.

Fig. 1 shows a proposed system which consists of
4 modules; attention module, environment recogni-
tion module, predictor selector and motion predic-
tor. The attention module determines the attention
area in the environment. From the attended area,
the geometrical information of an attended object
and its surrounding images are extracted and self
organized by RBM in the environment recognition
module. The self organized information is associ-
ated with the information of the movement of the
attended object in the prediction module. Based on
the association memory feature of RBM, the predic-
tion module can reconstruct the next position of the
attended object based on the current position and
the current environmental situation. In this section,
first, the learning algorithm of the restricted Boltz-
mann machine is explained. Second, it is explained
how RBMs are used in the environment recognition
module and prediction module. Then, the attention
module is explained

2.2 Restricted Boltzmann Machine

Restricted Boltzmann Machine (Hinton, 2007)
(Hinton et al., 2006) is a neural network consisting
of two layers, input (visible) layer and hidden layer.
There are no connections among units within each

layer. Each unit in the visible layer, vi, has a
symmetrical connection weight, wij , to each unit in
the hidden unit, hj . Each unit is activated by the
following probabilities,

P(hj = 1) =
1

1 + exp(−
∑

i viwij − βhj )
(1)

P(vi = 1) =
1

1 + exp(−
∑

j hjwij − βvi)
, (2)

where βvi and βhj are biases for activation.
The learning of RBM is processed by the calcula-

tion process called reconstruction. First, the activa-
tion lavel of the hidden layer, hj , are calculated by
the forward calculation based on the input data vi,
the connection weights wij and biases βvi with eq.
(1). Then the activation level of the visible layer, vi,
is calculated again with the activation level of the
hidden layer, hj with eq. (2). In the following, this
re-calculated activation level of the visible layer is
called reconstruction data. This calculation process
can be proceeded repeatedly. The superscript of the
unit vi and hj mentions the number of the repeated
calculation between layers. When the probabilistic
distribution of the input data and the reconstructed
data after ∞ repeats of reconstruction are p̂(v) and
p̂(v|w), respectively, the purpose of the learning is
to adjust the connection weights, wij , to minimize
the difference of the distribution between p̂(v) and
p̂(v|w). The distance between two distributions can
be measured by the cross entropy error, which is de-
fined by the following equation,

L = 〈log(p(v|w))〉p̂(x) (3)

= −
N∑

i=0

p̂(vi) log(p(vi|w)). (4)



The total energy of the RBM network with the
activation level, (v,h) in the both layers, can be de-
fined by the following equation,

E(v,h|w) = −
∑
i,j

vihjwij . (5)

The probability of the realization of the state (v,h)
is proportional to the total energy,

p(v,h|w) ∝ e−E(v,h|w). (6)

Thus, when the function of the right side of the equa-
tion is described as f like,

f(v,h|w) = e−E(v,h|w) (7)

f(v|w) =
∑
h

e−E(v,h|w), (8)

then the probabilities of the realization of the state
(v,h) and bfv given the weights bfw can be written
with f as

p(v,h) =
f(v,h|w)∑
v,h f(v,h|w)

(9)

p(v) =
∑

h f(v,h|w)∑
v,h f(v,h|w)

=
f(v|w)∑
v f(v|w)

.(10)

Applying the relation log p(v|w) = log f(v|w) −∑
v log f(v|w), the derivation of the cross entropy

error, 4, can be transformed as follows,

∂L

∂w
= 〈 ∂

∂w
log f(v|w) −

∑
v

f(v|w)
Z

∂

∂w
log f(v|w)〉p̂(x)

= 〈 ∂
∂w

log f(v|w) −
∑
v

p(v|w)
∂

∂w
log f(v|w)〉p̂(x)

= 〈 ∂
∂w

log f(v|w)〉p̂(x) − 〈 ∂
∂w

log f(v|w)〉p(v|w)

= 〈 ∂
∂w

log f(v|w)〉p0 − 〈 ∂
∂w

log f(v|w)〉p∞

where p0 is the input data (0−th reconstruction
data) and p∞ is the ∞-th reconstruction data. For
actual calculation, instead of p∞, 1 − st reconstruc-
tion data, p1, is used for minimization. Then, the
derivation can be simplified as

〈 ∂

∂wij
log f(v|wij)〉p0 − 〈 ∂

∂wij
log f(v|wij)〉p1

= 〈 ∂

∂wij

∑
i,j

vihjwij〉p0 − 〈 ∂

∂wij

∑
i,j

vihjwij〉p1 (11)

= 〈vihj〉p0 − 〈vihj〉p1 (12)

Thus, the update learning rule for minimizing the
cross entropy error can be derived as

∆wij = ε(v0
i P(h0

j = 1) − P(v1
i = 1)P(h1

j = 1)).
(13)

In the same way, the learning rule for biases can be
derived as

∆βhj = ε(P(h0
j = 1) − P(h1

j = 1)) (14)

∆βvi = ε(P(v0
i = 1) − P(v1

i = 1)) (15)

In the actual learning, the input data are divided
into several groups and the parameters are updated
group by group to avoid the over learning. Moreover,
we added the additional of learning rule to limit the
activation rate of each unit. This sparseness con-
straint seems to be important to describe the input
data with more compact patterns of activations in
hidden layers (Lee et al., 2008). The convergence of
the learning is evaluated by the total error between
input data and the reconstruction data,

err = v0
i − P(v1

i = 1). (16)

After learning, the reconstruction process can be
used for reconstructing complete data set from the
incomplete data. This feature can be used for associ-
ation of the given multiple data sets. Moreover, when
the number of the units in the hidden layer is less
than that in the visible layer, the extraction of the
important features of the input data can be expected.
Hinton stresses that this characteristic of RBM fa-
vorable for avoiding local minima in learning of deep
layered network. Thus, RBM has both features of su-
pervised and unsupervised self-organization learning
properties.

2.3 Environment Module

An object will change the movement depending on
the environment where the object is put. The prop-
erties of the movement will be affected by the shape
of the object. For example, we expect a ball shape
will be expected to move easily but not for a square
object. And the same object will change its move-
ment depending on the pathway the object is put on.
The environment module categories visual informa-
tion of an attended object and its surroundings.

To extract the geometrical information from the
images of an attended object and its surroundings,
the results of the gabor filters of these images are
input to RBM. The result images of the gabor filters
of ψ = [0◦, 45◦, 90◦, 135◦] are segmented into 5 × 5
units. In each unit, the pixel values are summed and
normalized to the attended area. The activation level
of the j-th unit, Ij , is determined by the normalized
summed value aj and some threshold,

Ij =

{
1 (aj > th)
0 (aj ≤ th)

. (17)

The input to the environment module RBM, v<env>,
is the combination of the vectors of the gabor filter



results for the object image, I<obj>, and the vectors
of the gabor filter results for the surrounding image,
I<around>,

v<env> = (I<obj>, I<around>). (18)

Fig. 2 shows the flow chart of the processing.
After learning, the activation pattern in the hid-

den layer, h<env>, is expected to describe self orga-
nized information of the input images. Thus, these
information is used in the prediction module for pre-
diction of the movement of the attended object.                    I < o b j > I < a r o u n d >v < e n v > = I < o b j > , I < a r o u n d >( )

< e n v >E n v i r o n m e n t M o d u l e  
o b j e c t i m a g e s u r r o u n d i n g i m a g eg a b o r fi l t e r g a b o r fi l t e rb i n a r i z e db i n a r i z e d
Figure 2: The environment module

2.4 Prediction Module

Fig. 3 shows the schema of the prediction module.
The RBM in prediction module associates the cur-
rent movement information S(t), the previous move-
ment information S(t − 1), and the situation infor-
mation h<env>. The position information consists of
the position and the velocity of an attended object,

S(t) = (x0, x1, ..., xn−1, y0, y1, ..., ym−1,

dx0, dx1, ..., dx2n−1, dy0.dy1, ..., dy2m−1).

When the image size is W ×H and it is divided into
n × m, and the coordinates of the attended object
are (x, y), then the position nodes are determined by
the following equations,

xi =

{
1 ( x

W/n ≤ i < x
W/n + 1)

0 else
(19)

and

yj =

{
1 ( y

H/m ≤ j < y
H/m + 1)

0 else
. (20)

When the shift of the attended object between ob-
served steps is (dx, dy), the velocity nodes are deter-
mined by

dxi =

{
1 ( dx

W/n + n− 1 ≤ i < dx
W/n + n)

0 else
(21)

and

dyj =

{
1 ( dy

H/m +m− 1 ≤ j < dy
H/m +m)

0 else
. (22)

In order to realize the prediction in the various
time scales and spatial frames, several RBM with
various kinds of time scale and spatial segmentation
sizes are prepared. Among them, the appropriate
predictor is selected based on the reliability of the
predictors. The reliability of i-th predictor, ci, is
calculated based on the hidden layer of the environ-
ment recognition module, h<env>, as

ci =
∑

j

ws
ij × h<env>

j . (23)

The connection weights, ws
ij , is learned based on the

following Hebbian learning,

∆ws
ij = ε(e−∆ri × h<env>

j ) (24)

where ∆ri is the prediction error of the movement in
i-th prediction module, ε is the learning rate. The
activation level of each RBM, a<RBM>

i , is calculated
based on the reliability ci,

a<RBM>
i =

1
1 + exp(−

∑
i ci)

(25)

and the RBM that has the maximum value is selected
as the predictor under the current situation.

2.5 Attention Module

We hypothesized that attention consists of three pro-
cesses; catch, retain and release. First, in the catch
process, the attended point is selected based on the
saliency (Itti et al., 2003). For that purpose, the
saliency map is calculated with regard to various
image features such as intensity, color, motion, etc.
Once the attended point is decided, the attended ob-
ject area is evaluated as the set of pixels that have
the same color of attended point. Then, the attended
object area is segmented and used for the template
for pattern matching. The object are is normalized
and binarized as the input for the attention module,
I<obj> (Fig. 2). The surrounding image of the at-
tended object whose size is the half of the camera im-
age is normalized and binarized as the input for the
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attention module, I<around>. The attention point is
retained for the learning until the trigger for releas-
ing attended point is given. For effective learning,
it is supposed that the attended points whose move-
ment can be predicted completely should be released.
The points whose movement are random should also
be released earlier because such points may well be
noise. On the other hand, the points whose move-
ment can be partly predicted should be retained long
for learning more. For that purpose, we compared
two kinds of functions that decide the probabilities
to release the attention points.

attention1 =
−enerror − e1−nerror + e+ 1

−2e0.5 + e+ 1
(26)

attention2 =
e1−nerror − 1

e− 1
(27)

where nerror is the rate of the number of the predic-
tion modules that fails to predict. The graphs are
shown in Figs. 4. The attention is released when the
above attention level becomes less than some thresh-
old.
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Figure 4: Attention function

3. Experiments

3.1 Learning Prediction without attention

To validate the prediction faculty, the proposed sys-
tem is applied to the real robot. Fig. 5 shows the
robot FK used in the experiment. Although this
robot has two IEEE 1394 cameras and 2 degrees of
freedom (pan and tilt) to move the camera, only the
right camera is used with eye position fixed. The
camera image is captured with 33 [frames/sec].

Figure 5: robot FK

To validate the prediction faculty in various situ-
ations, three kinds of situations are prepared; a ball
on the holizontal rail, a ball on the vertical rail and
a ball in the pendulum 6. In each situation, 4 tri-

(a) situation 1

(b) situation 2

(c) situation 3

Figure 6: Situations of experiments

als are recorded, each of which has about 90 steps.
For the prediction module, 6 RBMs are prepared (2
kinds of segmentations (40×40, 10×10) and 3 kinds
of time steps (5, 10, 20 steps)). The numbers of the
visible and hidden units of the environment module
are 200 and 50, respectively. The numbers of the vis-
ible and hidden units of the prediction modules are
368 and 92 for the segment size 40 × 40, 128 and 32
for the segment size 10×10. The attended area to be
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attended is given as the image template (orage ball)
by the designer in this experiment.

Fig. 7 shows the learning error of all RBMs. The
learning of each RBM converges within 100 learning
steps. The examples of the prediction after learning
is mentioned in Fig. 8. These are the predictions
of RBMs that have 10 × 10 segments and 5, 10, 20
prediction time steps (20 step prediction is shown
only in every 20 step).
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Figure 8: Examples of prediction of the movement after

learning

3.1.1 Supplemental Learning

To validate the faculty of the predictor in additional
learning, after learning in one situation (Fig. 9(a)),
additional data in another situation (Fig. 9(b)) is

(a) Situation 1

(b) Situation 2

Figure 9: The training data for supplemental learning

given to the network. For each situation, 3 trials
(each trial consists of 68 steps) are recorded for train-
ing data. The other conditions are the same as the
previous subsection. The data of second situation
is added to the training data of the situation net-
work after the 250 steps of learning in the first sit-
uation. Fig. 10 shows the time courses of the av-
eraged error rate per one node through the learning
process (only 2 of 6 predictors are shown). Around
the 250-th learning steps, the error rate rises when
new data is added to the training data. However,
in the following 100 steps, the error rate decreases
to around 0.3 indicating that the network success-
fully represent both the new and old situation. Fig.
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mental learning

11 shows the predicted position of the attended ob-
ject before and after the supplemental learning. (a)
Before the supplemental learning, the robot predicts
the attended ball will go through the wall because he
does not experienced such kind of situation (squares
are the predicted positions in the next 5, 10 and 20
steps. The big and small squares are the predic-
tion in 10× 10 and 40× 40 segments.). (b) After the
supplemental learning, the robot can make appropri-
ate predictions depending on the situations. Before
the supplemental learning, the robot predicts that



the ball will move through the wall in right direction
as before (b). After the supplemental learning, the
robot can predict that the ball will stop at the wall
(c).

5 10 20

10x10 5 10 20

40x40

(a) Prediction before
learning

5 10 20

10x10 5 10 20

40x40
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ing (situaton 1)
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Figure 11: Prediction of the ball position before and after

the supplemental learning

3.2 Learning Prediction with Attention

In the experiments of previous subsection, the object
to be attended is given by the designer in advance.
In order for a robot to learn the physical causality
autonomously, it is important to implement an at-
tention control system appropriately. For this pur-
pose, we applied the attention module to the same
situations as the experiments explained in the pre-
vious subsection. Each situation consists of 3 tri-
als that have 90 steps. For the prediction mod-
ule, 6 RBMs are prepared (2 kinds of segmentations
(40× 40, 10× 10) and 3 kinds of time steps (5, 10, 20
steps)) for the prediction modules.

Figs. 12 shows the time course of the error rate in
the learning procedures with the attention function 1
(Fig. 12 (above)) and the attention function 2 (Fig.
12 (below)). Whereas the learning is not stable with
the attention function 1, the learning with the atten-
tion function 2 converges to some stable state. This
is because with the attention function 1 the robot
easily change its attention to another point (often
shiny noise point in the environment other than the
object) when the first part of the movement can be
learned. Figs. 13 show the timing when the robot
changes its attention in the middle of the learning
procedure for situation 3 with the function 1 (above)
and with the function 2 (below). In these graphs, the
gray line indicates the rate of the prediction failure
modules, the black line indicates the attention level
(calculated by eq. (26) and eq. (27)), and the dashed

line indicates the threshold that the robot changes
its attention (the arrows indicate the timing when
the robot changes its attention). With the function
1, the robot predicts the first part of the movement
successfully and loses its attention easily because the
prediction is successfully done. This makes the learn-
ing unstable. On the other hand, with the function
2, the robot can keep its attention once the appro-
priate attention point (the object) is found. And the
stable learning data can be obtained.  

0.0

0.1

0.2

0.3

0.4

0.5

5
10

Time Step Segment Size

20

40x40

10x10

0 50 100 150 200 250

P
re
d
ic
ti
o
n
 E
rr
o
r

Learning Steps      
Learning Steps

5
10

Time Step Segment Size

20

40x40

10x10

P
re
d
ic
ti
o
n
 E
rr
o
r

0.0

0.1

0.2

0.3

0.4

0 100 200 300 400

Figure 12: Prediction error based on the attention mod-

ule with the function 1 (above) and the function 2 (below)
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4. Discussion

In this paper, we proposed a layered associative net-
work that can predict the movements of the observed
object depending on the surrounding situation. The
higher abstract concept such as ”object permanence”
can be acquired through the learning of many con-
crete phenomena in the real world. The proposed
network could be extended to more higher represen-
tation of the world. Fig. 14 shows the result of the
principle component analysis of the activation pat-
terns in the hidden layer of the prediction module
(the image segments are 10 × 10 and the prediction
time step is 5). This graph shows the activation pat-
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Figure 14: Principal component analysis of the activation

patterns of hidden layer in prediction module

terns can be self-organized depending on the situa-
tion. So, the information of the activation patterns
can be used to discern the states such as ”The ball
is goes to left on the horizontal line.”. This implies
the possibility to construct higher abstract concept
based on the self-organization of lower data through
the bottom-up approach.

”Object permanence” is thought to be closely re-
lated to memory. To realize an object does not dis-
appear behind an obstacle and will appear again, an
agent should recognize that the reappeared object
is the same one as the previous one. In the pro-
posed network, if the attended object disappears be-
hind some obstacle, the robot could not retain its
attention because the robot will release its atten-
tion based on the attention level function 2. How-
ever, if the prediction module that enables long term
prediction is available, the robot can retain its at-
tention and relate the object behavior during disap-
pearing and reappearing. The key faculty for this
learning is how long working memory can record the
series of events and how the prediction module will
learn from the events in the working memory. In
fact, it is reported that the working memory abil-
ity of infants is enhanced from 7.5 months (2 secs)
to 12 months (12 sec) (Schwartz and Reznick, 1999)
(Reznick et al., 2004). We are now conducting the

experiments to relate the prediction ability of a dis-
appeared object and the time length of memory.

References

Baillargeon, R. and DeVos, J. (1991). Object per-
manence in young infants: further evidence.
Child development, 62:1227–1246.

Baillargeon, R., Spelke, E. S., and Wasserman, S.
(1985). Object permanence in five-month-old
infants. Cognition, 20:191–208.

Fitzpatrick, P., Needham, A., Natale, L., and
Metta, G. (2008). Shared challenges in object
perception for robots and infants. Journal of
Infant and Child Development, 17(1):7–24.

Hinton, G. E. (2007). Learning multiple layers of
representation. TRENDS in Cognitive Sciences,
11(10):428–434.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006).
A fast learning algorithm for deep belief nets.
Neural Computation, 18:1527–1554.

Itti, L., Dhavale, N., and Pighin, F. (2003). Re-
alistic avatar eye end head animation using a
neurobiological model of visual attention. Pro-
ceedings of SPIE.

Knudsen, E. I. (2007). Fundamental components
of attention. Annual Review of Neuroscience,
30:57–78.

Lee, H., Ekanadham, C., and Ng, A. Y. (2008).
Sparse deep belief net model for visual area v2.
In Proceedings of the Neural Information Pro-
cessing Systems (NIPS) 20.

Lovett, A. and Scasselatti, B. (2004). Using a robot
to reexamine looking time experiments. In Pro-
ceedings of the 4th International Conference on
Development and Learning (ICDL).

Piaget, J. (1954). The construction of reality in the
child. basic books.

Reznick, J. S., Morrow, J. D., Goldman, B. D., and
Snyder, J. (2004). The onset of working memory
in infants. Infancy, 6(1).

Schlesinger, M. (2003). A lesson from robotics:
Modeling infants as autonomous agents. Adap-
tive Behavior, 11(2).

Schwartz, B. B. and Reznick, J. S. (1999). Mea-
suring infant spatial working memory using a
modified delayed-response procedure. Memory,
7:1–17.


