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Abstract

This paper presents a learning mechanism
that finds the reasonable segmentation to
achieve social behavior as well as incremen-
tally acquires social behavior by reproducing
the contingency in interaction with a care-
giver. The robot autonomously categorizes
sensorimotor activity according to a contin-
gency measure based on transfer entropy. The
advantage of adaptive categorization is tested
in a task of acquiring joint attention behav-
iors. The results of computer simulations of
human-robot interaction indicate that a robot
acquires a series of joint attention behavior
such as gaze following and alternation and it
finds suitable segmentation that improves the
performance of gaze following over time.

1. Introduction

Human infants acquire a variety of social behavior
through interaction with others. In particular, joint
visual attention is one of the building blocks for so-
cial capabilities such as language communication and
mind-reading (Moore and Dunham, 1995). There-
fore, understanding how infants acquire a variety of
joint attention behavior such as gaze following, gaze
alternation, and pointing is a central topic in devel-
opmental psychology. However, it remains a mystery
how infants acquire such behavior.

In robotics, joint attention studies have
been recently receiving increasing attention
not only from the viewpoint of building com-
municative robots (Imai et al., 2001) but also
from synthetic approaches for modeling and
understanding human developmental pro-
cesses (Nagai et al., 2003, Triesch et al., 2006)
as argued in surveys (Kaplan and Hafner, 2004,
Asada et al., 2009). One of them has addressed
how a robot can acquire different joint attention
behavior (Sumioka et al., 2008). Sumioka et al

emphasized a statistical structure based on the fact
that infants can often attain consistent consequences
when they respond adequately to a preceding stim-
ulus including behavior of their caregivers. Such
a structure of the relationship among a preceding
stimulus, one’s own action, and its consequence,
called contingency, was utilized to find more contin-
gent sets including sensory and motor variables that
provides consistent consequences to a robot among
several candidates, and to construct sensorimotor
maps based on the found sets. The results of
computer simulations of human-robot interaction
indicated that finding the contingency and taking
actions to reproduce it enable a robot to acquire
a series of joint attention behavior such as gaze
following and alternation in an order that is almost
the same order of infant development.

In their study, each random variable was quantized
in advance into the reasonable segments sufficient
to reproduce contingencies of interaction between a
robot and a caregiver so that a robot can acquire so-
cial behavior. However, it is not trivial for a robot to
quantize a variable adequately since the most reason-
able segmentation depends on the sensor resolution
of the robot, the control resolutions of the caregiver’s
behavior and the robot’s one, and an observed object
size and its location. If the robot found the contin-
gency based on rough segmentation, the contingency
is expected to include stronger contingency based on
more sophisticated segmentation. Therefore, we uti-
lize the contingency measure to obtain the most rea-
sonable segmentation, that is, we segment a variable
so that a robot can reproduce the contingency. We
hypothesize that quantizing variables to experience
more contingent consequences leads the robot to ac-
quire social behavior that enables it to interact with
its caregiver adequately.

This paper presents a learning mechanism to quan-
tize each variable adaptively as well as to find the
contingency and reproduce the contingent relation-
ship. The contingency measure based on information



theory (Sumioka et al., 2008) is utilized for adaptive
quantizing. The advantage of adaptive quantizing is
tested in a task of acquiring joint attention behav-
ior. The results of computer simulations of human-
robot interaction indicate that a robot acquires a se-
ries of joint attention behavior such as gaze follow-
ing and alternation and it finds suitable segmenta-
tion that improves the performance of gaze following
over time.

2. Face-to-face interaction to develop
joint attention behavior

Figure 1: An environmental setting

To examine whether a robot can acquire a vari-
ety of joint attention behavior with quantizing sen-
sory variables and motor ones, we start from a rough
model of the caregiver’s gaze shift. We simulate
almost the same interaction as in previous stud-
ies (Sumioka et al., 2008).

Figure 1 shows an environmental setting of the
interaction. The robot sits across from the caregiver
at a fixed distance. An interaction where each of
the caregiver and the robot take an action at once is
defined as a time step. There is a table having NX ×
NY sections where two same objects each of which
occupies OX×OY sections are randomly placed. The
positions of objects are determined randomly every
ten steps.

In an interaction, the caregiver observes her en-
vironment and then shifts her gaze to the robot or
an object according to a few policies as described in
section 4.1.2. Next, the robot observes its environ-
ment and obtains the information about the direc-
tion of the caregiver’s face (S1) and the presence of
an object (S2) as sensory variables. It also stores the
information about what it is looking at as the result
of its actions called resultant sensory variables: care-
giver’s frontal face (R1), caregiver’s profile (R2), and
the presence of an object (R3). Finally, it shifts its
gaze to the caregiver or a table section and shows a
hand gesture, and stores a motor command for gaze
shift (M1) and one for hand gesture (M2) as motor
variables.

Here, a contingency inherent in the interaction ap-
pears as a dependency of a resultant sensory variable
on a sensory variable and a motor variable. We call
a triplet of variables (Si, Mj , Rk) an event variable.
Moreover, an event variable that involves strong de-
pendency is called a contingent event variable. The
task of the robot is performed by finding a contin-
gent event variable and then acquiring a sensori-
motor mapping based on the found event variable.
Moreover, the robot has to determine how it should
quantize sensory variables and motor variables.

3. Proposed mechanism to succes-
sively develop social behavior with
adaptive partitioning

Instead of a designer quantizing a random vari-
able into several segments in advance, we make
the robot quantize them autonomously. A
contingency measure proposed by Sumioka et
al. (Sumioka et al., 2008) is utilized for quantizing
variables as well as constructing sensorimotor map-
pings. The proposed architecture shown in Figure 2
consists of three features: (1) a contingency monitor
that sends commands to quantize sensory variables
and motor ones, (2) State/Motor categorizer to out-
put one of components in sensory variables and mo-
tor ones according to the observed features and mo-
tor commands, and (3) sequential contingency learn-
ing module to enable the robot to acquire several
actions by finding contingency of interaction and its
reproduction.

Figure 2: A proposed mechanism

Observed sensory features are categorized by the
state categorizer as one of the components in each
sensory variable. The selected components are sent
to the sequential contingency learning module. The
sequential contingency learning module decides one
of the components in each motor variable according
to the acquired sensorimotor mapping or innate be-
havior policies as described in section 3.2.3. Finally,
the motor categorizer selects motor commands based
on the selected components. During this process,



contingency of an event variable is evaluated in the
sequential contingency learning module by calculat-
ing the contingency measure (Sumioka et al., 2008)
as described in next section. According to the mea-
sure, the contingency monitor commands the state
categorizer and the motor one to update the seg-
mentation in sensory variable and motor one.

3.1 Contingency measure

Sumioka et al. proposed an information theo-
retic measure of contingency, called as saliency
of contingency (C-saliency), based on transfer en-
tropy (Schreiber, 2000) to quantify contingency of an
event variable (Sumioka et al., 2008).

Suppose that two time series variables X and Y
may be approximated by first-order Markov pro-
cesses and that they form the following contingency:
xt+1, i.e., the value of X at time t + 1, is only influ-
enced by xt and yt, i.e., the values of X and Y at
the previous time t. Here, the transfer entropy that
indicates the influence of Y on X is defined by

TY →X =
∑

p(xt+1, xt, yt) log
p(xt+1|xt, yt)
p(xt+1|xt)

. (1)
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the highest C-saliency is regarded as a contingent
event variable.

Additionally, C-saliency has an interesting feature
to evaluate the performance of an acquired senso-
rimotor map. The sensorimotor map that usually
causes contingent consequences enables a robot to
predict the state transitions of a resultant sensory

variable only by states of a sensory variable. C-
saliency related to such a map gets lower because
the value of the first term in Eq. (3) reduces. There-
fore, the derivative of C-saliency is useful to evalu-
ate the accuracy of the acquired sensorimotor map:
if the derivative is negative, the robot has acquired
a sensorimotor map sufficient to reproduce the con-
tingency while the robot needs to quantize variables
related to the map if the derivative is not negative.

3.2 Components in proposed mechanism

C-saliencies of event variables is utilized by the pro-
posed mechanism not only to find contingency and
to reproduce it but also to quantize variables based
on more reasonable segmentation. Here, the roles of
the components in the mechanism are described.

3.2.1 Contingency monitor

The contingency monitor modulates the quantization
of sensory variables and motor ones. The quanti-
zation of a variable consists of two processes: how
a variable should be quantized by the existing seg-
ments (arrangement process) and how many seg-
ments a variable should be quantized into (insertion
process). In each process, we use a derivative of C-
saliency for an event variable. Here, the derivative of
C-saliency for an event variable (Si, Mj , Rk) at t time
steps is indicated as ∆Cj

i,k(t) = Cj
i,k(t)−Cj

i,k(t− 1),
where Cj

i,k(t) indicates C-saliency for (Si,Mj , Rk) at
t time steps.

The contingency monitor basically uses the ar-
rangement process where segments in a variable are
modulated so that C-saliency of an event variable
including the variable becomes higher. In the pro-
cess, the contingency monitor sends the state cate-
gorizer and the motor one the values that determine
how much state categorizer and motor one should up-
date segment arrangement. The values ∆CS

max and
∆CM

max for a sensory variable Si and a motor vari-
able Mj are given by ∆CS

max

(
= maxj,k ∆Cj

i,k

)
and

∆CM
max

(
= maxi,k ∆Cj

i,k

)
, respectively. To avoid

modulation during a period when C-saliencies are
overestimated due to few samples, these values are
sent when variance for moving average of each C-
saliency during TA time steps, σA

j
i,k, is lower than

εA.
The contingency monitor has a possibility of us-

ing the insertion process, which decides whether it
should insert new segments into a sensory variable or
a motor one, after the contingency detector selects
a contingent event variable and generates a CM as
described in section 3.2.3. Let cCj

i,k C-saliency for
a contingent event variable (Si, Mj , Rk). New seg-
ments are inserted to Si and Mj when the variance



σI
j
i,k for the moving average of its derivative ∆cCj

i,k

keeps a lower value than εS during T I time steps.
Once new segments are inserted into a sensory vari-
able and a motor one, the insertion process is not
applied for those variables during TD time steps at
least.

3.2.2 Sensory/Motor Categorizer

State/Motor categorizer outputs one of segments in
each of sensory variable or motor one for given in-
puts. Suppose that a variable V is quantized into
Nv codebook vectors and vector va` represents seg-
ment vc` (` = 1, 2, · · · , Nv). When vector vx re-
lated to V is input to state(motor) categorizer, the
state(motor) categorizer selects segment vc` with
probability P (V = vc`):

P (V = vc`) =
exp {1/ (τv‖vx − va`‖)}∑Nv

q=1 exp {1/ (τv‖vx − vaq‖)}
, (4)

where τv is a positive constant.
The selected codebook vector va` is updated ac-

cording to ∆C (which stands for ∆CS
max or ∆CM

max

described in previous section) related to an event
variable including V :

vat+1
` = vat

` + ηΦvx,va`
Ψ∆C

[
vxt − vat

`

](
if. vxt ∈ vc`

)
, (5)

where, η is a learning rate. Φvx,va`
is given by

Φvx,va`
= exp

(
−‖vxt−vat

`‖
ζ

)
, where ζ is a constant

value. Ψ∆C is defined as Ψ∆C = ξ tanh (∆C) and ξ
is constant.

In addition, the sensory categorizer or the motor
one inserts new codebook vectors for a variable when
the insertion process is applied for the variable by
the contingency monitor. Each categorizer decides
where to insert the vectors according to the policy
described in section 4..

3.2.3 Sequential contingency learning mod-
ule

We used the learning module proposed by Sumioka
et al (Sumioka et al., 2008) that consists of a con-
tingency detector to calculate C-saliencies for all
event variables, contingency reproduction modules
(CMs) that construct sensorimotor maps to repro-
duce found contingency, reactive behavior modules
(RMs) to output a motor command based on a fixed
behavior policy, and a module selector to select mo-
tor commands among several outputs from CMs and
RMs.

The sequential contingency learning module keeps
acquiring different sensorimotor mappings as follows.
At the beginning of learning, there are no CMs.

Therefore, the module selector selects the outputs
of RMs. As interaction between a caregiver and the
robot is iterated, the contingency detector finds a
contingent event variable and then generates a new
CM that constructs a sensorimotor map to reproduce
the found contingency. Once a CM is generated, The
module selector starts to select an output from the
CM as well as ones from RMs. This iteration of
finding contingency and its reproduction, the robot
acquire several actions.

Note that whenever a new CM is generated, a
new sensory variable SΠ and a new motor one MΠ

are added to their sets to indicate whether the new
CM was used and is going to be used, respectively.
The contingency detector also starts to evaluate new
event variables including them. Such event variables
may be selected as a next contingent event variable
if the found contingency leads novel contingency.
Therefore, the robot is expected to find a series of
contingent events.

The sensorimotor map in CM is modulated every
200 time steps to utilize more reasonable segmenta-
tion. Hereafter i-th CM that is constituted for event
variable (Si,Mj , Rk) is defined as Πi(Rk|Si, Mj).

4. Experiment

We conducted computer simulations to test whether
the proposed mechanism can acuiqre joint attention
actions in different environments. We first examine
whether a robot acquires a series of actions related
to joint attention such as gaze following and alterna-
tion, i.e., successive looking between a caregiver and
an object, in simple environmental setting. The size
of objects is then changed to show that the mecha-
nism can find the more reasonable segmentation. Af-
ter that, the performance of the mechanism is tested
in more complex situations where a robot has to deal
with high-dimensional information or it has a field of
view as bias inherent in human. In all experiments,
policies for RMs and parameters were set so that a
robot can find the contingency related to gaze fol-
lowing at least.

4.1 Experimental setting

4.1.1 Environment and infant model

The initial set of variables is listed in Table 1. The
sensory variable for the caregiver’s face is denoted by
S1 which consists of two segments (S1c1 and S1c2)
and two additional components indicating that an
infant model (hereafter a robot) is looking at her
frontal face (fr) and that it does not look at the
caregiver (fφ), respectively. In the experiments, we
fixed the number of components in the sensory vari-
able for an object S2. Each member of S2 indicates
whether the robot is looking at an object (o) or at



something else (oφ).
The resultant variables R1, R2, and R3 are de-

signed as binary variables indicating whether the
robot is looking at its preferred face or an object
(”1”) or not (”0”). The robot’s gaze shift denoted
by M1 consists of two segments (M1c1,

M1 c2) and an
additional state gc indicating shifting its gaze to the
caregiver’s face. Likewise, the gesture denoted by
M2 consists of two segments (M2c1,

M2 c2) and hc in-
dicating pointing its hands to caregiver’s face.

Two RMs are used to determine gaze movements
and hand by selecting a component of M1 and M2.
The RM for M1 is designed to select either gc with
probability 0.1 or one segment with probability 0.9
while the RM for M2 selects a component of M2 ran-
domly. The parameters in the proposed mechanism
are set as (TA, T I , TD, εA, εI , τv) = (2.0 × 103, 5.0 ×
103, 2.0 × 105, 1.0 × 10−10, 1.0 × 10−12, 2.0 × 10−2).
The joint and conditional probabilities to calculate
C-saliencies were estimated using the histograms of
the values of event variables.

Table 1: Initial variables in robot

Type Name Elements

S
caregiver’s face S1 = {S1c1,

S1 c2, fr, fφ}
object S2 = {o, oφ}

M
gaze shift M1 =

{
M1c1,

M1 c2, gc

}
hand gesture M2 =

{
M2c1,

M2 c2, hc

}
R

frontal face of caregiver R1 = {0, 1}
profile of caregiver R2 = {0, 1}

object R3 = {0, 1}

4.1.2 Behavior rules for caregivers

We used the caregiver model described in the pre-
vious study (Sumioka et al., 2008). The caregiver,
who always looks at the robot’s face or an object on
the table, not only randomly selects a target but also
shows joint attention behavior.

She usually selects a target randomly. If she is
looking at the robot’s face, she follows the robot’s
gaze with probability pc

rja. If she is looking at an
object, she shifts her gaze between the robot and an
object with probability pc

ija. In addition, the care-
giver shifts the gaze to the robot’s face with proba-
bility pc

aja if she and the robot successfully look at
the same object. In the following experiments, we
used (pc

rja, pc
ija, pc

aja) = (0.5, 0.5, 1.0).

4.2 Development of joint attention with
adaptive segmentation

We first confirmed that the proposed mechanism en-
ables a robot to acquire a variety of actions related to

joint attention with quantizing sensory variables and
motor variables. We ran 2,000,000 time step simula-
tions five times where two objects each of which oc-
cupies 5 × 1 sections were arranged on a table having
50 × 1 sections. We set (η, ζ, ξ) = (0.1, 10, 6.0×104).
In each simulation, two codebook vectors were added
on the positions of two existing codebook vectors se-
lected randomly when contingency monitor selected
insertion process for a sensory variable and a motor
one.
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Figure 3: Time courses of saliency of contingency of event

variables in simulation face-to-face interactions between

caregiver and robot

An average of 2.8 CMs was obtained. In the
80 percent of the simulations, a particular set
of CMs was generated in the following fixed or-
der: Π1(R3|S1,M1), Π2(R2|S2,M1), and then
Π3(R2|SΠ1

3 , M1). Each of these CMs allowed the
robot to achieve social behavior: following the
caregiver’s gaze (Π1(R3|S1,M1); hereafter called
following-gaze module), shifting its gaze to the
caregiver after seeing an object (Π2(R1|S2,M1);
hereafter called returning (seeing-object) module),
and shifting its gaze to the caregiver regardless of
the achievement of gaze following (Π3(R2|SΠ1

3 ,M1);



hereafter called returning (no-condition) module).
Figure 3 shows examples of the time courses of

C-saliencies for nine event variables of which C-
saliencies are higher than others. The vertical axis
indicates the logarithmic value of the C-saliencies.
We also show the timing of generating new CMs as
arrows at the top of the graph in Figure 3(a). After
sufficient interaction data was collected, C1

1,3 became
the highest among all C-saliencies (blue curve in Fig-
ure 3(a)). As a result, a new CM (Π1(R3|S1, M1))
corresponding to the following-gaze module was gen-
erated, and SΠ1

3 and MΠ1
3 were added as sensory and

motor variables, respectively. The robot then began
to follow the caregiver’s gaze by the following-gaze
module. However, the success rate of gaze follow-
ing is not so high at many areas on a table (see
Figure 4(a)) because S1 and M1 have only two seg-
ments, that is, the robot classifies the face of the
caregiver that is looking on the table as only two dif-
ferent patterns. In this case, C1

1,3 does not decrease
since segmentation is not reasonable to achieve gaze
following. Therefore, new segments are inserted into
S1 and M1 (see Figure 3(b)). Finally, S1 and M1

had an average of 6.4 segments. The codebook vec-
tors in each variable were arranged at almost equal
distance at the end of the simulation (Figure 5). We
can see that the found segment arrangement enables
a robot to achieve gaze following for the caregiver
successfully (see Figure 4(b)).
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Figure 4: Changes in success rate of gaze following

The increase of success rate of gaze following led
C1

1,3 to decrease gradually. This decrease made C1
2,2

the next highest value, and the returning (seeing-
object) module was generated. Using output from
this module changed the contingency in interaction
and promoted an increase of C1

3,2 (red curve in Fig-
ure 3(a)). This caused the generation of the return-
ing (no-condition) module. This enabled the robot
to shift its gaze to the caregiver regardless of fol-
lowing the caregiver’s gaze or not. As a result, the

robot alternately shifted its gaze between the care-
giver and an object. This indicates that the robot
acquired gaze following and alternation with finding
the reasonable segment arrangement.
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Figure 5: Transition of codebook vectors

4.3 Performance of adaptive segmentation

The environmental features such as the size of a table
or an object affect how many segments are needed to
achieve gaze following. We examined to what extent
the robot can maintain the high performance of gaze
following in several different situations where objects
with the different size are arranged.

We ran simulations where the size of objects is dif-
ferent. To show the advantage of the proposed mech-
anism, we also tested mechanisms without arrange-
ment process and insertion process: S1, M1, and M2

were quantized into the fixed segments (four, eight,
or twelve segments) that were arranged at equal dis-
tance in advance.

Figure 6 shows the average of success rate of gaze
following in utilizing following-gaze module in the
cases of the different object size. We can see that the
proposed mechanism can achieve high success rate
in every case while the mechanisms without arrange-
ment process and insertion one has low success rate
except for the case where the number of segments is
sufficient to achieve gaze following.

We also checked how many segments S1 or M1 is
quantized into after learning. The results shown in
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Figure 7 indicates that the proposed mechanism can
find reasonable segmentation to achieve gaze follow-
ing.
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4.4 Segmentation in presence of high-
dimensional information

In natural interaction with a caregiver, an infant
should deal with high-dimensional information. In
this case, a designer has difficulty quantizing vari-
ables in advance. We tested whether a robot acquires
gaze following when it obtains a camera image of hu-
man face and takes actions on a square table.

We ran simulations where two objects each of
which is a square having 4 sections were arranged
on a square table having 49 sections. The robot ob-
serves one of 18 40×40 pixel grayscale images in-
dicating different directions of the human face. As
codebook vectors for S1, 1600-dimensional vectors
were used. The robot’s actions were represented as
2-dimensional vectors indicating a position on the ta-
ble. We set (η, ζ, ξ) = (1.0, 500, 8.0 × 104). A new
codebook vector was added on a point through two
vectors of the existing vectors in insertion process.

The average of 1.8 CMs was obtained. In over
80 percent of the simulations, following-gaze module
and returning(after seeing an object) module were
generated. In the simulations, S1 and M1 were quan-

tized into the average of 5.2 segments. Figure 8
shows changes in the sensorimotor map from S1 to
M1 constructed by following-gaze module during a
simulation. When following-gaze module was gener-
ated, the robot can coarsely shift its gaze to where
the caregiver is looking (Figure 8(a)). Through the
iteration of arrangement process and insertion one,
however, it acquired sensorimotor map sufficient to
follow the caregiver’s gaze.
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Figure 8: Changes in sensorimotor map from S1 to M1
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Figure 9: A sensorimotor map of following-gaze module

in a robot with realistic visual field

4.5 Segmentation in presence of perspective
correct visual field

In the experiments described above, we assumed that
the robot can see an area of equal size despite the po-
sition on the table. However, this assumption is not
reasonable in a real world. The size of the area that a
human sees depends on the distance from the human:
the closer the area is to the human, the smaller area
the human sees. Therefore, we investigated whether
codebook vectors are arranged according to the dis-
tance from a robot when the robot has a visual field
depending on the distance.



We assumed to have a robot that is 0.5 meters
tall has 2.5-degree field of view based on the area
that a human fovea covers (Fairchild, 2005). This
means that the robot can see about three or two
sections on the table at the same time when shifting
its gaze around the caregiver while it can see about
one section when looking at an area around the robot
itself. We used the same experimental setting as ones
in the previous section except for the view field.

The average number of acquired CMs was 1.6. In
about 60 percent of the simulations, following-gaze
module and returning(after seeing an object) module
were generated. The number of segments in S1 and
M1 was the average of 3.8 segments. Figure 9 shows
changes in the sensorimotor map from S1 to M1 con-
structed by following-gaze module after a simulation.
S1 and M1 were quantized so that codebook vectors
are arranged depending on the distance. This result
indicates that the proposed mechanism enables the
robot to find reasonable segmentation even when it
has to segment a variable with depending on the dis-
tance.

5. Conclusion and discussion

We proposed a learning mechanism that finds rea-
sonable segmentation to achieve joint attention be-
havior as well as incrementally acquires it by repro-
ducing the contingency in interaction with a care-
giver. The robot autonomously categorizes senso-
rimotor activity according to a contingency measure
based on transfer entropy. We confirmed that a robot
acquires gaze following and alternation and it finds
suitable segmentation to reproduce the contingency
in several conditions including several kinds of diffi-
culty.

Developmental psychologists have suggested that
human infants develop the ability of gaze following
gradually (Moore and Dunham, 1995): they utilize
only the information of head orientation of another
person to achieve joint attention, and then begin to
realize that the person’s eyes also direct his/her at-
tention. In the experiment, the robot quantized sen-
sory (and motor) variables to find stronger contin-
gency and, as a result, gradually quantized S1 repre-
senting the caregiver’s direction of gaze at higher res-
olution. Finding stronger contingency may explain
infant development of gaze following.

In the proposed mechanism, the derivative of C-
saliency ∆C was utilized to modulate the codebook
vectors. We investigated how much ∆C influences
this modulation. We ran another simulation using
the same experimental setting as the ones reported
in section 4.5 except that ∆C was replaced by a
constant value, expressly Ψ∆C = 1.0. Compared to
the result with adaptive Ψ∆C (Figure 9), codebook
vectors of M1 were distributed evenly on a table al-
though the segmentation in M1 with adaptive Ψ∆C

is optimized reflecting visual field. This illustrate
that the modulation based on the derivative of C-
saliency promotes finding segmentation sufficient to
reproduce contingency.

In the experiments, a few components in a variable
such as fr in S1 were given in advance. However, a
robot should quantize each variable without such a
priori knowledge. The segmentation to reproduce
contingency of interaction with others may generate
the components given in the experiments. As a fu-
ture work, we will investigate whether a robot can
autonomously find suitable segmentation including
fr and fφ in S1.
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