
Improving Recurrent Neural Network
Performance using Transfer Entropy

Oliver Obst1,2, Joschka Boedecker3,4, and Minoru Asada3,4

1 CSIRO ICT Centre, Adaptive Systems, PO Box 76, Epping, NSW 1710, Australia
2 School of Information Technologies, The University of Sydney, NSW 2006, Australia
3 Department of Adaptive Machine Systems, Osaka University, Suita, Osaka, Japan

4 JST ERATO Asada Synergistic Intelligence Project, Suita, Osaka, Japan
Oliver.Obst@csiro.au

joschka.boedecker@ams.eng.osaka-u.ac.jp

asada@ams.eng.osaka-u.ac.jp

Abstract. Reservoir computing approaches have been successfully ap-
plied to a variety of tasks. An inherent problem of these approaches, is,
however, their variation in performance due to fixed random initialisa-
tion of the reservoir. Self-organised approaches like intrinsic plasticity
have been applied to improve reservoir quality, but do not take the task
of the system into account. We present an approach to improve the hid-
den layer of recurrent neural networks, guided by the learning goal of the
system. Our reservoir adaptation optimises the information transfer at
each individual unit, dependent on properties of the information transfer
between input and output of the system. Using synthetic data, we show
that this reservoir adaptation improves the performance of offline echo
state learning and Recursive Least Squares Online Learning.

Key words: Machine learning, recurrent neural network, information
theory, reservoir computing, guided self-organisation.

1 Introduction

Reservoir Computing (RC) is a recent paradigm in the field of recurrent neural
networks (for a recent overview, see [1]). RC computing approaches have been
employed as mathematical models for generic neural microcircuits, to investigate
and explain computations in neocortical columns (see e.g. [2]). A key element of
reservoir computing approaches is the randomly constructed, fixed hidden layer
– typically, only connections to output units are trained. Despite their impressive
performance for some tasks (e.g. [3]), their fixed random connectivity can lead
to significant variation in performance [4]. To address this issue, approaches
like Intrinsic Plasticity (IP) [5, 6] can help to improve randomly constructed
reservoirs. IP is based on the idea to maximise available information at each
internal unit in a self-organised way by changing the behaviour of individual
units. This is contrast to, for example, Hebbian learning [7], which strengthens
connections between two units if their firing patterns are temporally correlated.



2 Oliver Obst, Joschka Boedecker, and Minoru Asada

Both adaptation of individual units as well as adaptation of connections are
phenomena that occur in biological units.

IP learning has been used as an approach to optimise reservoir encoding
specific to the input of the network [6]. It is, however, only dependent on the
input data, and does not take the desired output of the system into account,
i.e., it is not guaranteed to lead to optimised performance with respect to the
learning task of the network [4]. Ideally, we would like to retain the principle of a
self-organised approach to optimise reservoirs, but to guide self-organisation [8]
based on the overall learning goal.

The approach presented in this paper for the first time leads to a method
that optimises the information transfer at each individual unit, dependent on
properties of the information transfer between input and output of the system.
The optimisation is achieved by tuning self-recurrent connections, i.e., the means
to achieve this optimisation can be viewed as a compromise between Hebbian
and IP learning. Using synthetic data, we show that this reservoir adaptation
improves the performance of offline echo state learning, and is also suitable
for online learning approaches like backpropagation-decorrelation learning [9] or
recursive least squares (RLS, see e.g. [10]).

2 Echo State Networks

ESN provide a specific architecture and a training procedure that aims to solve
the problem of slow convergence [11, 3] of earlier recurrent neural network train-
ing algorithms. ESN are normally used with a discrete-time model, i.e. the net-
work dynamics are defined for discrete time-steps t, and they consist of inputs,
a recurrently connected hidden layer (also called reservoir) and an output layer
(see Fig. 1).

We denote the activations of units in the individual layers at time t by ut ,
xt , and ot for the inputs, the hidden layer and the output layer, respectively.
The matrices win, W, wout specify the respective synaptic connection weights.
Using f(x) = tanhx as output nonlinearity for all hidden layer units, the network
dynamics is defined as:

xt = f(Wxt−1 + winut) (1)

ot = woutxt (2)

The main differences of ESN to traditional recurrent network approaches are
the setup of the connection weights and the training procedure. To construct
an ESN, units in the input layer and the hidden layer are connected randomly.
Only connections between the hidden layer and the output units are trained,
usually with a supervised offline learning approach using linear regression. Here,
the output weights wout are calculated using the collection of desired output
states D, and the pseudoinverse of a matrix S collecting the states of the system
over a number of steps as wout = S†D (see [11] for details). An online learning
procedure, like RLS, adapts the output weights while training input is fed into



Improving RNN Performance using Transfer Entropy 3

Fig. 1. In echo state networks, only output weights (represented by dashed lines) are
trained, all other connections are setup randomly and remain fixed. The recurrent layer
is also called a reservoir, analogously to a liquid, which has fading memory properties
in response to perturbations (like e.g. ripples caused by a rock thrown into a pond).

the network, i.e., no states need to be collected. The RLS update rule can be
described with the following set of equations:

αt = dt −wout
t−1 · xt , (3)

gt = pt−1 · xt/(λ+ xt
T · pt−1 · xt) , (4)

pt = (pt−1 − gt · xt
T · pt−1 )/λ , (5)

wout
t = wout

t + (αt · gTt ) , (6)

where αt represents the a priori error vector between desired output dt and
current input, pt the inverse of the autocorrelation, and λ is close to 1 and is an
exponential forgetting factor. RLS has been applied to ESN learning in [12].

Even though the reservoir weights are randomly initialised and remain fixed,
these connections cannot be completely random; they are typically designed to
have the echo state property. The definition of the echo state property has been
outlined in [11] and is summarised in the following section.

2.1 The Echo State Property

The Echo State Property is reflected in the following definition. In simple terms,
the system has echo state property if different initial states converge to each
other for all inputs. Consider a time-discrete recursive function:

xt+1 = F(xt ,ut+1 ) (7)

that is defined at least on a compact sub-area of the vector-space x ∈ Rn, with
n the number of internal units. The xt are to be interpreted as internal states
and ut is some external input sequence, i.e. the stimulus.



4 Oliver Obst, Joschka Boedecker, and Minoru Asada

Definition 1. Assume an infinite stimulus sequence: ū∞ = u0,u1, . . . and two
random initial internal states of the system x0 and y0. From both initial states
x0 and y0 the sequences x̄∞ = x0,x1, . . . and ȳ∞ = y0,y1, . . . can be derived
from the update equation Eq. (7) for xt+1 and yt+1 . The system F (·) will have
the echo state property if, independently of the set ut , for any (x0,y0) and all
real values ε > 0, there exists a δ(ε) for which d(xt ,yt) ≤ ε for all t ≥ δ(ε),
where d is a square Euclidean metric.

3 Transfer Entropy

To improve the reservoir based on the learning goal, we are interested in de-
tecting the characteristics of the information transfer between input and desired
output of the system. Transfer Entropy [13] is an information-theoretic measure
for the information provided by a source about the next state of the destination
which was not already contained in its own history. It is similar to mutual in-
formation [see e.g. 2], but asymmetric (i.e. directed), and takes the dynamics of
information transfer into account. The transfer entropy from a source node Y
to a destination node X is the mutual information between previous l states of
the source y(l)

n and the next state of the destination xn+1,

TY→X = lim
k,l→∞

∑
un

p(xn+1, x
(k), y(l)

n ) log2

p(xn+1|x(k)
n , y

(l)
n )

p(xn+1|x(k)
n )

. (8)

where un is the state transition tuple (xn+1, x
(k), y

(l)
n ).

For our purposes, TY→X(k, l) represents finite k, l approximation.

4 Reservoir Dynamics

In the following, we consider the case where we have an one-dimensional input
vector u. The learning goal for our system is a one step-ahead prediction of an
one-dimensional output vector v. Departing from the usual reservoir dynamics
described above, we use

x(k + 1) = diag(a)Wy(k) + (I− diag(a))y(k) + winu(k) (9)
y(k + 1) = f(x(k + 1)) , (10)

where xi, i = 1, ..., N are the neural activations, W is the N × N reservoir
weight matrix, win the input weight, a = (α1, ..., αN )T a vector of local decay
factors, I is the identity matrix, and k the discrete time step. In this work, we
use f(x) = tanh(x).

The αi represent a decay factor, or coupling of a unit’s previous state with
the current state; they are computed as:

αi =
2

1 +mi
, (11)



Improving RNN Performance using Transfer Entropy 5

where mi represents the memory length of unit i (mi ∈ {1, 2, 3, ...}). All
memory lengths are initialised to mi = 1, so that αi = 1, i.e. the reservoir
has the usual update rule. Increasing individual mi during an adaptation will
increase the influence of a unit’s past states on its current state.

5 Adaptation of Information Transfer

Adaption of the reservoir to the learning goal introduces two extra steps to the
learning procedure. In a first step, we determine the required history size l to
maximise the information transfer from input u to output v, i.e. a first idea may
be to look for a value

lmax = arg max
l

Tu→v(1, l) .

Using increasingly larger history sizes may, however, always increase the
transfer entropy (by possibly smaller and smaller values). To optimise the infor-
mation transfer, we will instead be looking for the smallest value l̂ that does not
increase the transfer entropy Tu→v(1, l̂ − 1) by more than a threshold ε, i.e.

Tu→v(1, l̂ + 1) ≤ Tu→v(1, l̂) + ε and (12)

Tu→v(1, l) > Tu→v(1, l − 1) + ε for all l < l̂ . (13)

From this first step, we learn the contribution of the size of the input history
to the desired output (the learning goal of the system): some input-output pairs
may require a larger memory of the input history to be informative about the
next output state, other outputs may be more dynamic, and be dependent on
the current input state only.

We take this information into the second step, which consists of a pre-training
of the reservoir. Here, the local couplings of the reservoir units are adapted so
that the transfer entropy from the input of each unit to its respective output is
optimised for the particular input history length l̂. The idea behind this step is
to locally adjust the memory at each unit to approximate the required memory
for the global task of the system. Pre-training is done in epochs of length ` over
the training data. Over each epoch θ, we compute, for each unit i, the transfer
entropy from activations x(`)

i to output y(`)
i :

teθi = T
x
(`)
i →y

(`)
i

(1, l̂). (14)

If the information transfer during the current epoch θ exceeds the information
transfer during the past epoch by a threshold (i.e., teθi > teθ−1

i + ε), the local
memory length mi is increased by one. Likewise, if teθi < teθ−1

i − ε, the local
memory length is decreased by one, down to a minimum of 1.

After each epoch, all mi and αi are adapted according to this rule, and used
to compute activations over the next epoch. Once the training data is exhausted,



6 Oliver Obst, Joschka Boedecker, and Minoru Asada

pre-training of the reservoir is finished and the αi are fixed. For the subsequent
training we compute the output weights by linear regression with data as used in
the pre-training. In additional experiments, we use RLS online learning, where
adaptation and training of output weights were run in the same loop.

6 Experimental Results

We tested our method using a one-step ahead prediction of unidirectionally
coupled maps, and a one-step ahead prediction of the Mackey-Glass time series.

6.1 Prediction of autoregressive coupled processes

As first experiments we studied our approach using a one-step ahead prediction
of two unidirectionally coupled autoregressive processes:

ut+1 = 0.7ut + 0.7 cos(0.3t) + nxt (0, σ2) and (15)

vt+1 = 0.7 vt + e ut−ω+1 + nyt (0, σ2) , (16)

where the parameter e ∈ [0, 1] regulates the coupling strength, ω ∈ {0, 1, 2, ...}
an order parameter, and nxt (0, σ2) and nyt (0, σ2) are independent Gaussian ran-
dom processes with zero mean and standard deviation σ = 0.4. For each trial,
we generated time series u and v (random initial conditions; time series divided
into 10000 values for training and 1200 values for testing; the first 200 values
of both training and testing were used to prime the reservoir), where the task
of our system was a one-step ahead prediction of v using u. The reservoir was
initialised using a random, sparse recurrent weight matrix (|λ| = 0.95), with 40
internal units. Figure 2 (a) displays the mean square errors of the prediction over
the test data for different coupling strengths and fixed ω = 0 for both echo state
learning with and without adaptation of information transfer in the reservoir.
All values are averaged over 50 trials; for each individual trial the same reservoir
and time series have been used once with and without adaptation. The predic-
tion using the reservoir adaptation is better over almost the entire range of e,
with the improvement becoming more significant as the influence of the input
time series becomes larger. Figure 2 (b) is a plot of the mean square error for
different ω using a fixed coupling of e = 0.75. In all but one cases the reservoir
adaptation improves results.

6.2 Prediction of Mackey-Glass time series

A further experiment was prediction of the widely used Mackey-Glass time series
(see e.g. [11, 14, 6]) with parameter τ set to 17. The first task using this time
series was again a one-step ahead prediction using a reservoir size of 40 units. For
this task, the transfer entropy between input and output time series is maximised
already for smaller values of ` compared to our first experiment (` was typically



Improving RNN Performance using Transfer Entropy 7

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Coupling strength e

M
S

E

 

 

without reservoir adaptation

with reservoir adadption

2 4 6 8 10
0

0.5

1

1.5

2

2.5

Order parameter ω

M
S

E

 

 

without reservoir adaptation

with reservoir adadption

Fig. 2. (a) Left: mean square errors of the prediction over the test data for different
coupling strengths and fixed ω = 0. (b) Right: mean square error for different ω using
a fixed coupling of e = 0.75. Reported results are averages over 50 runs.

around 2 for Mackey-Glass one-step ahead prediction), i.e., the information used
from the previous state to predict the next state is already quite high. The
reservoir adaptation lead to an average improvement of the MSE (averaged over
50 runs) from 0.4530 · 10−6 to 0.0751 · 10−6. Individually, in 48 of the 50 runs,
the same reservoir performed better with adaptation than without adaptation.

Instead of offline learning, we also used RLS in the same loop with our reser-
voir adaptation. To less consider data from earlier stages of the adaptation, we
used a forgetting factor λ = 0.995. Again, the adaptation improved performance,
from 9.1 · 10−6 to 7.2 · 10−6; a fine-tuning of λ may further improve the results.

7 Conclusions

We presented an information-theoretic approach to reservoir optimisation. Our
approach uses a local adaptation of a units internal state, based on properties of
the information transfer between input and desired output of the system. The
approach has shown to improve performance in conjunction with offline echo-
state regression, as well as with RLS online learning. In our experiments we have
used only a small number of internal units – our goal was to show the capability
of our approach compared to standard echo state learning. In first additional
experiments (not reported here), we have shown that for a larger number of
units our adaptation leads to an even larger improvement compared to echo state
learning without adaptation. A further investigation of statistical properties of
coding in the reservoir obtained by our adaptation may provide useful insights.
Moreover, other information-theoretic measures such as the active information
storage [15] may be useful to further improve the local adaptation rule.

Acknowledgments. The Authors thank the Australian Commonwealth Sci-
entific and Research Organization’s (CSIRO) Advanced Scientific Computing
group for access to high performance computing resources used for simulation
and analysis.



Bibliography

[1] Lukosevicius, M., Jaeger, H.: Reservoir computing approaches to recurrent
neural network training. Computer Science Review 3(3) (2009) 127–149

[2] Maass, W., Natschläger, T., Markram, H.: Real-time computing without
stable states: A new framework for neural computation based on perturba-
tions. Neural Computation 14(11) (2002) 2531–2560

[3] Jaeger, H., Haas, H.: Harnessing Nonlinearity: Predicting Chaotic Systems
and Saving Energy in Wireless Communication. Science 304(5667) (2004)
78–80

[4] Boedecker, J., Obst, O., Mayer, N.M., Asada, M.: Initialization and self-
organized optimization of recurrent neural network connectivity. HFSP
Journal 3(5) (October 2009) 340–349

[5] Triesch, J.: A gradient rule for the plasticity of a neuron’s intrinsic excitabil-
ity. In Duch, W., Kacprzyk, J., Oja, E., Zadrozny, S., eds.: Proceedings of
the International Conference on Artificial Neural Networks (ICANN 2005).
Lecture Notes in Computer Science, Springer (2005) 65–70

[6] Steil, J.J.: Online reservoir adaptation by intrinsic plasticity for
backpropagation-decorrelation and echo state learning. Neural Networks
20(3) (April 2007) 353–364

[7] Hebb, D.O.: The organization of behavior: a neuropsychological theory.
Lawrence Erlbaum Associates (1949)

[8] Prokopenko, M.: Guided self-organization. HFSP Journal 3(5) (2009) 287–
289

[9] Steil, J.J.: Backpropagation-decorrelation: Recurrent learning with O(N)
complexity. In: Proceedings of the International Joint Conference on Neural
Networks (IJCNN). Volume 1. (2004) 843–848

[10] Hayes, M.H.: Chapter 9.4 Recursive Least Squares. In: Statistical Digital
Signal Processing and Modeling. Wiley (1996)

[11] Jaeger, H.: The “echo state” approach to analysing and training recurrent
neural networks. Technical Report 148, GMD – German National Research
Institute for Computer Science (2001)

[12] Jaeger, H.: Adaptive nonlineaer systems identification with echo state net-
works. In: Advances in Neural Information Processing Systems. (2003)
609–615

[13] Schreiber, T.: Measuring information transfer. Physical Review Letters
85(2) (July 2000) 461–464

[14] Hajnal, M., Lőrincz, A.: Critical echo state networks. Artificial Neural
Networks – ICANN 2006 (2006) 658–667

[15] Lizier, J.T., Prokopenko, M., Zomaya, A.Y.: Detecting non-trivial compu-
tation in complex dynamics. In Almeida e Costa, F., Rocha, L.M., Costa,
E., Harvey, I., Coutinho, A., eds.: Proceedings of the 9th European Con-
ference on Artificial Life (ECAL 2007), Lisbon, Portugal. Volume 4648 of
Lecture Notes in Artificial Intelligence., Springer (2007) 895–904


