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Abstract—This paper presents a method of simultaneous
development of vocal imitation and lexicon acquisition with
a mutually constrained multimodal mapping. A caregiver is
basically assumed to give matched pairs for mappings, for
example by imitating the learner’s voice or labelling an object
that it is looking at. However, the tendency cannot be always
expected to be reliable. Subjective consistency is introduced to
judge whether to believe the observed experiences (external input)
as reliable signal for learning. It estimates the value of one layer
by combining the values from other layers and external input.
Based on the proposed method, a simulated infant robot learns
mappings among the representations of its caregiver’s phonemes,
those of its own phonemes, and those of objects. The proposed
mechanism enables correct mappings even when caregivers do
not always give correct examples, as real caregivers do not for
their infants.

I. INTRODUCTION

Human infants start to comprehend words uttered by adults

by eight months and produce their first words by twelve

months (the early stage of lexicon acquisition) [1]. They start

to mimic the single vowels of adults by eight months as well

as consecutive vowels by fourteen months (the early stage of

vocal imitation) [2]. Thus, the onset of lexicon acquisition

and vocal imitation seems to overlap, and furthermore, one

of them might facilitate (or interfere with) the other process.

For example, the vocal imitation ability helps infants vocalize

unheard words as well as the knowledge of a sound label,

and its correspondence to an object helps them imitate the

sound label even if it is partially difficult to hear. What

kind of mechanisms enable such interaction in simultaneous

developmental processes?

In the brain, two different information streams have been

studied for their speech perception and production roles. The

ventral and dorsal streams underlie mechanisms for sound

to meaning mapping (word comprehension) and sound to

articulation mapping (vocal imitation), respectively, [3], [4].

Interaction between these streams has been also suggested

to exist at the terminal regions of them [4] and underlie the

meaning to articulation mapping (word production). Although

the literature suggests a mutually constrained network for

Fig. 1. Typical assumed environment of caregiver-robot interaction

vocal imitation and lexicon acquisition, it remains unclear how

such a structure contributes to the developmental processes of

each mapping.

Answering these questions only by developmental psychol-

ogy or brain science approaches is not easy. Synthetic studies

have been considered quite promising approaches for such

questions about development mechanisms [5]. In previous

work, the process of lexicon acquisition has often been mod-

eled as correlation learning between sound labels and the

visual patterns of objects (meaning) referred to as labels [6],

[7]. For vocal imitation, correlation learning between infant

articulation and phonemes produced by caregivers imitates

infant’s articulation [8], [9]; the imitative characteristic of

caregivers has also been focused on [10]. However, existing

synthetic studies on lexicon acquisition and vocal imitation

have been done separately. In other words, the interaction in

simultaneous developmental processes has not been addressed.

In this study, as in previous work, we assume that a

caregiver provides a robot with matched pairs for mappings by

three types of behavior: imitating the robot’s voice, labeling

an object that it is looking at, or displaying an object with

its sound label. However, due to the caregiver’s arbitrariness

and/or the difficulty of correctly inferring its intention, the

caregiver’s tendency of providing matched pairs for mappings

is not always reliable. In this paper, we consider multimodal

mappings based on these types of caregiver behavior since



the simultaneous learning of them reduces the difficulty in the

learning process of each mapping due to fewer reliabilities

in caregiver behavior. For example, imagine that the robot is

going to learn mapping between its own articulation and the

sound features of the caregiver utterance. Since the caregiver

does not always imitate the robot’s articulation, a strategy that

matches the heard sound with its own articulation often fails.

However, if the robot knows other correct mappings, namely,

one from its own articulations for sound labels to their mean-

ings and one from meaning to sound features that describe the

meaning, it can utilize them to predict the corresponding sound

features from its own articulation. Then such a prediction

can be utilized to judge whether the heard sound is likely

the learning signal for mapping from its previous articulation.

However, since such a prediction is not necessarily true until

these other mappings mature, a feasible mechanism is needed

for a judgment that reflects the learning progress.

For this purpose, we propose a learning method for a

mutually constrained multimodal network and introduce an

index with subjective consistency to integrate multiple signals

fed into a particular layer of the network. The multiple signals

include the external signal (observation of a possible match

given by the caregiver), a predicted one with a mapping to be

learned, and a predicted one with a stream of other mappings.

Based on the proposed method, a simulated infant robot

learns mappings among the representations of its caregiver’s

phonemes, those of its own phonemes, and those of objects.

The proposed mechanism enables correct mappings even when

the caregiver fails to always give correct examples. The rest of

this paper is constructed as follows: first we explain the inter-

action assumptions that a robot must develop and introduce the

proposed mechanism. We then show the experimental results

in computer simulations. Finally, we verify that the proposed

mechanism enables correct mappings even when the caregiver

does not always give correct examples as real caregivers do

not with their own infants.

II. ASSUMPTIONS

Suppose that a robot and a caregiver take turns in an

environment with objects (see Fig. 1). At each step, the robot

looks at either the caregiver or an object and decides whether

to say something. Then the caregiver selects one of three types

of behavior: vocalization, showing, and labeling. The robot

behavior is assumed to be immature, so the caregiver does

not always correctly recognize its utterances or the focus of

attention. Therefore, the caregiver is modeled to sometimes

fail to perform such behavior with fixed probabilities that not

only represent the robot immaturity but also the tolerance in

the caregiver’s response. Each type of behavior is defined as

follows:

Vocalization: caregiver imitates the utterances of robot or

utters non-imitative words. Due to the robot’s immatu-

rities for articulation and the caregiver’s insensitivities

for its utterance, the caregiver is supposed to correctly

imitate with probability pI .

Showing: caregiver shows an object whose label it utters

or a different one. Due to the robot’s immaturities

for articulation and the caregiver inabilities to draw

the robot’s attention, the probability that the caregiver

correctly shows a corresponding object to the robot’s

utterance is set to pC .

Labeling (calling): caregiver shows the robot an object and

utters a label that refers to the object. The caregiver

selects an object at which it is looking or other ob-

jects. Due to the robot’s immaturities for following the

caregiver’s attention and the caregiver’s inabilities to

draw the robot’s attention, the caregiver is assumed to

successfully make it see an object and hear a sound

label that refers to the object with probability pT .

The caregiver selects behavior by consciously or uncon-

sciously taking its attention into account to correctly guide

the mapping learning processes. In this study, resembling the

likely characteristics of human caregivers who interact with

their children, the caregiver’s strategy of selecting behavior

is assumed to obey the rules below. Note that this strategy

is one example of caregiver behavior that not only provides

the correct samples of experiments for learning multimodal

mapping but also the false ones. When the robot talked while

looking at the caregiver, the caregiver always vocalized. When

the robot talked while looking at an object, the caregiver

always showed that object. When the robot did not talk

while looking at the caregiver or an object, the caregiver

always said the object label. The caregiver gives examples

of correct mappings with probabilities pI for vocalization, pC

for showing the object on which it focused, and pT for label-

ing (hereinafter, these probabilities are called corresponding

probabilities). Otherwise, the caregiver says any label and/or

shows any object independently of the robot behavior.

The robot does not always get examples for learning correct

mappings, which is a situation that resembles actual infants.

III. MUTUALLY CONSTRAINED MULTIMODAL MAPPING

MODEL

Through interaction with a caregiver whose behavior is

specified in the previous section, the robot learns mutually

constrained multimodal mapping among layers representing its

own phonemes a ∈ ℜMi , those of the caregiver’s phonemes

s ∈ ℜMc , and those of objects o ∈ ℜN (see Fig. 2). It can

obtain one of these external input vectors when it vocalizes

sounds, when it listens to the caregiver utterances, or when it

looks at any object. Each element of these vectors is assigned

to each node of the corresponding layer. By repeating the inter-

actions, the robot learns the connection weight matrix between

nodes of different two layers, namely, those between its own

and the caregiver’s phonemes W I (imitation mapping), those

between the caregiver’s phonemes and objects W L (word-

listening mapping), and those between the objects and its own

phonemes W P (word-producing mapping).

Suppose that the i-th layer receives input vector x and

the j-th layer and then receives another external input vector

yex. Given x, direct prediction vector y in the j-th layer is



Fig. 2. Mutually constrained multimodal mapping model

estimated to predict yex. The m-th element of y is sampled

from the following probability distribution:

Pr (ym = 1|W ,x) =
1

1 + exp (−
∑

n wnmxn)
, (1)

where ym is the m-th element in y and xn is the n-th element

in x. W is the connection weight matrix between the nodes

of the i-th and the j-th layers, and wnm is the element of the

n-th row and the m-th column in W .

Appropriate values W must be found to correctly estimate

the direct prediction vector for vocal imitation or lexicon

acquisition. As an example of imitation, the robot is required

to learn W I so that Pr (s|W , x) approaches the probability

distribution of its own utterance given when it is imitated by

the caregiver.

IV. SUBJECTIVE INTEGRATION THROUGH MULTIMODAL

REPRESENTATION

In previous works, correlation learning based on external

input from caregiver behavior coincident with robot behavior

was often considered. For example, when the caregiver imi-

tates the robot’s utterance, the robot learns correlation between

its own and the caregiver’s utterances. If the caregiver always

provides the robot with examples of correct mappings through

such behaviors as vocalization, showing, or labeling, the robot

learns correct mappings using external input from caregivers

as learning signals. However, if the caregiver often fails to

give such examples, it might learn incorrect mappings.

In mutually constrained multimodal mapping, as in Fig. 2,

the values that predict the external input in a certain layer of

mappings can be obtained from plural streams through other

layers or by directly receiving external input vectors. There-

fore, constraining other mappings to be learned by utilizing

the predicted values with matured mappings might be feasible

to avoid the above problem. However, the learner has to judge

which signals are reliable using only accessible variables. In

this section, we propose a method of selective integration to

create reliable learning signals based on subjective consistency.

Suppose again that x and yex are external input vectors

to the i-th and j-th layers and that yin(= y) is the direct

prediction vector of yex from x by direct mapping. Further-

more, suppose another layer labeled by k received from the

i-th layer and that outputs indirect (bypassed) prediction vector

yby to the j-th layer. Therefore, three vectors yex, yin, and

Fig. 3. Notations for learning rules

yby , can be coped with as a possible learning signal (see Fig.

3). Prediction vector y′ is calculated as follows:

y′ = f(yex, yin,yby) = λexyex + λinyin + λbyyby, (2)

where λn (n ∈ ex, in, by) represents the subjective consisten-

cies of each learning signal, each of which indicates how it is

consistent with others, and is calculated by

λn =
exp

(

−en/σ2
)

∑

m∈{ex,in,by}

exp
(

−em/σ2
)

, (3)

where σ is the parameter of sensitivity for the consistencies.

en represents the consistency of yn and is calculated with the

distances of yn from other signals such as

en =
∏

l,l/∈n

∣

∣

∣

∣yn − yl
∣

∣

∣

∣. (4)

In short, the closer to the other two signals, the bigger λn is,

based on Eqs. (3) and (4).

Creating learning signals by using not only external in-

put vectors but also prediction vectors enables caregiver-

independent learning for the necessary cases. Furthermore,

weighing those signals by the subjective consistencies is

expected so that compatible signals can be used as learning

signals .

V. LEARNING RULES OF MAPPINGS

We extend the learning rules of the Restricted Boltzmann

Machine (RBM) [11], [12] to be mutually associative. RBM,

which is a neural network model that consists of both input

and hidden layers, is employed as a model of associative

memory [13] and prediction [14]. In RBM, the connection

weight matrix is updated as follows:

∆wnm = ε
(

〈xnym〉P − 〈x̂nŷm〉P̂W

)

, (5)

where ∆wnm is the amount of updating of the connection

weight between the n-th element of the input layer and the

m-th element of the hidden layer. ε is a learning coefficient,

xn and ym are the n-th element of input vector x and the

m-th element of hidden vector y recalled in response to x,

respectively. x̂n is the n-th element of reconstructed input



vector x̂ that is recalled using y as input. ŷm is the m-th

element of reconstructed hidden vector ŷ recalled in response

to x̂. P is the probability distribution of input, and P̂W is

the probability distribution of input by the model after one

step reconstruction. 〈·〉Q denotes an expectation with respect

to distribution Q.

Connection weight W is updated so that the correspondence

of the input and hidden vectors is constant by duplicating the

above process. Therefore, recalling the corresponding patterns

of the input and hidden layers is available after learning. In

previous works, the signal patterns of the hidden layer were

self-organized depending on the input layer. In our study, to

recall the corresponding patterns between different external

input layers, learning signal y′, which is generated based on

subjective consistency, is used as an already sampled vector

instead of sampling hidden variable y. Therefore, the learning

rule to update the connection weight between the n-th element

of the i-th layer and the m-th element of the j-th layer is

modified as follows:

∆wnm = ε
(

〈xny′
m〉PP ′ − 〈x̂nŷ′

m〉P̂W P̂ ′

W

)

, (6)

where ∆wnm is the amount of updating of the connection

weight between the n-th element of the i-th layer and the

m-th element of the j-th layer. xn and y′
m are the n-th

elements of external input vector x and the m-th element

of learning vector y′ calculated by subjective integration,

respectively. PP ′ is the joint probability distribution of those

signals. x̂n is the n-th element of reconstructed external input

vector x̂, which is recalled from y′ by Eq. (1). ŷ′
m is the m-

th element of reconstructed learning vector ŷ′ calculated by

subjective integration under x̂. P̂W P̂ ′
W

is the joint probability

distribution of those signals. Extention from Eq. (5) to Eq. (6)

represents that the hidden signals, which were originally self-

organized depending on input signals, are biased externally.

This is expected to produce mutually associative learning

between different external input layers.

At each learning step, the robot calculates the amount of

updating not only from the i-th layer to the j-th layer (∆W )

but also from the j-th layer to the i-th layer (∆W ′) using

yex for Eq. (6) instead of x. Then it updates W by summing

these updates as

W = W +
(

∆W + ∆T W ′
)

. (7)

Note that the expectations in Eq. (6) are approximated to the

sampled or received values in our experiment.

Since we cannot assume that the caregiver always imitates

the robot utterances, it is not trivial for the robot to statistically

learn correct mappings. In contrast, our proposed method is

expected to enable robust learning of mappings against such

caregiver error because not only external inputs but also di-

rect/indirect predictions are used for learning. Moreover, since

the learning of the three mappings proceeds simultaneously,

the effect of mutual constraining is expected to facilitate the

learning processes of each mapping: even though it faces

a situation where obtaining correct examples for a certain

mapping is difficult, if the situation still allows the robot

to obtain those for other mappings, it is expected to utilize

these easier mappings for learning the difficult one based on

subjective consistencies.

VI. SIMULATION

To show how the proposed method facilitated the learning

of mutually constrained multimodal mapping, we conducted a

series of computer simulations of caregiver-robot interaction,

as described in Section II. In Experiment I, we measured

the learning performance under several settings for the cor-

responding probabilities of three types of caregiver behavior:

vocalizing, showing, and labeling. We examined how robustly

the proposed method works against lowering corresponding

probabilities. To highlight what we call the mutual con-

straining effect of the proposed method, we measured the

learning performance in different settings; fewer examples for

correct mappings were given for a specific mapping, and more

examples were given for the other two (Experiment II).

A. Common setting

In both experiments, we assume that the robot can extract

moras1 from the caregiver utterances and vocalize any se-

quence of them but it does not know which caregiver moras

correspond to its own. Let s ∈ ℜM and a ∈ ℜM be an external

input that represent which M moras were used for the current

caregiver and robot utterances, respectively. For example, if

the robot utterance was /ai aj / that consists of the i-th and j-

th moras, both the i-th and the j-th elements of a were set to

1, and all other elements were set to 0. External input o ∈ ℜN

represented which N objects it is looking at. For example, if

it looked at the k-th object, the k-th element of o was set to

1, and the other elements were set to 0. Note that M = 37
and N = 392.

One of four types of robot behavior was randomly selected

every learning step. Then caregiver behaviors were selected

based on the rules described in Section II with parameters

specified for each experimental trial. The following parameters

for the learning mechanism were empirically selected for good

performance: ε = 0.2|σ = 1.0.

We introduced parameter η to control to what extent the

system depends on the proposed method in producing learning

signal y′, which is determined as follows:

y′ = (1 − η)yex + η(λexyex + λinyin + λbyyby). (8)

Based on this equation, the learning signal is created depend-

ing more on the proposed method if η is higher and vice versa.

1A mora is a phonetic segment with a constant length. For instance, /a/,
/ka/, and /bu/ are Japanese moras.

2The word labels used in this experiment were selected based on “goo
baby” (http://baby.goo.ne.jp) as of February 22th 2009, in which users report
when their babies acquire which word labels. We extracted noun words from
those reportedly acquired by infants by 18 months.
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Fig. 4. Average probability of predicting corresponding vectors by acquired
mappings until 200,000 steps with respect to dependency on subjective
consistency (η) and corresponding probability (pa)

B. Evaluation

Performance was evaluated in every learning step of the

simulation by testing all possible inputs and checking whether

the corresponding output vector was closest to the current

output sampled from Eq. (1) among all possible outputs. For

instance, suppose that the imitation mapping was evaluated

and that is denotes the corresponding vector of the caregiver’s

sound label to the i-th label to be vocalized ia(0 < i < 39).
The imitation mapping is evaluated as the average success

ratio of recalling is from ia and ia from is among the pairs

of correspondence (0 < i < 39). Whether iy is recalled from
ix is scored as following:

R(ix, iy) =







1 if i = arg min
j

(||iŷ(ix) −j y||)

0 otherwise
, (9)

where iŷ(ix) is the recalled vector from ix. Therefore, the

total score S for the imitation mapping is calculated as

S =
1

2

(

1

39

∑

i

R(ia,i s) +
1

39

∑

i

R(is,i a)

)

. (10)

The performances of both word-listening and word-producing

mappings are calculated alike.

C. Experiment I: robustness against corresponding probability

We first ran 10 sets of simulations with 200,000-step

interactions for different sets of corresponding probabilities:

pI , pC , and pT . These parameters were set to equal each

other as pa and varied from 0.2 to 1.0. pa = 1.0 shows the

baseline, which is the situation where the robot always get

examples of correct mapping from the caregiver. Fig. 4 shows

the average final performance of each mapping with respect to

η and pa. Shading means the performance level as of 200,000

steps. Performances with any η is high if pa is high. However,

performances with lower η became worthwhile along with the

decrease of pa, but those with higher η remain high against

the decrease of pa.

Figures 5 (a), (b), and (c) show two transitions of the aver-

age performance of each mapping with different parameters of

learning mechanism (solid curve for η = 1.0 and broken one

for η = 0.0) on a condition of less corresponding probability

(pa = 0.2). With the former parameter (η = 1.0), the robot

leans depending on the proposed method completely while it

does not depend on the proposed method at all with the latter

one (η = 0.0). The performances of η = 1.0 for all mappings

(solid curves) are apparently higher than those of η = 0.0
(broken curves).

These results show that the method of creating learning

signals based on subjective consistency enables robust learning

of mappings against corresponding probability. The robot

benefits from the fact that the proposed method could adapt to

what extent it should rely on the external input that depends

on situations. Consistent with this interpretation, subjective

consistency for the external input (black squares in Fig. 6)

at the final learning period is reduced for cases of less

corresponding probability.

D. Experiment II: effect of mutual constraining

To examine the effect of mutual constraining among dif-

ferent mappings, we ran 10 sets of simulations with 200,000-

step interaction for different corresponding probabilities of pI

while pC and pT were fixed to 0.4. To see whether relatively

matured mappings helped other mappings, that is, facing

more difficult learning situations, we set pI between 0.025

and 0.4. Note that the caregiver showed almost no imitation

tendency when pI was set to 0.025. With such a low value,

the probability of giving corresponding moras to those of the

robot was less than chance level since pI = 0.025(∼= 1/39).
Figure 7 shows the average final performances of each

mapping with respect to pI in cases of η = 1.0 and of η = 0.0.

The performance of η = 0.0 (black circles) failed to reach high

levels even for high corresponding probability. On the other

hand, those of η = 1.0 (white circles) remain high even if pI

almost decreases to the chance level. Although they finally

achieved the similar level, the performance of η = 1.0 at

20,000 steps (asterisks) shows a decrease of learning speed

based on the decrease of corresponding probability.

Similar results appeared even where the corresponding

probability of other mapping was less than the chance level.

Therefore, the proposed method enabled the correct learning

of mappings even when a caregiver engaged in such biased

behavior to her infant as no imitation, no showing, or no

labeling.

VII. CONCLUSION AND DISCUSSION

In this paper, we proposed a method to combine several

sources of a learning signal for mutually constrained multi-

modal mapping, which is formed by an external input and

internal predictions from possible streams of mapping. Each

signal’s subjective consistency, which evaluates its closeness

to other signals, is used to weight how it contributes on

creating learning signal through combining with other signals.

A series of computer simulations of caregiver-robot inter-

action demonstrated that our proposed method could model

the simultaneous developmental processes of vocal imitation

and lexicon acquisition as the learning process of mutually

constrained multimodal mapping among representations of the
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robot’s own phonemes, the caregiver’s phonemes, and the

objects. Our proposed method makes it possible to successfully

ignore external input when the caregiver fails to give examples

of correct mapping, which is presumably typical in real

caregiver-infant interaction. Note that, given sufficient correct

examples for word-listening and word-producing mappings,

that is, showing and labeling behavior of the caregiver, the

robot learned imitation mapping, even though the caregiver

almost completely does not imitate at all.

The proposed method assumes that the robot can receive

input vectors representing its sensorimotor experience, such as

its own articulation, the auditory perception of the caregiver

utterances, and the visual perception of objects. How infants

segment and categorize external and internal signals remains

a big mystery in modeling infant development. Since the

resolution of each representation depends not only on the

robot’s own modality but also on other modalities, we cope

with this issue by synthesizing how such representation can

be formed along with the processes of learning mutually

constrained multimodal mapping.

Furthermore, in the current work, the tendencies (probabil-

ities) of the caregiver behaviors were assumed to be fixed.

However, from the viewpoint of model plausibility for infant

development, we should increase the sophistication of the care-

giver model by observing caregiver-infant interactions from

similar situations in the real world. The more the situation

and/or assumptions become realistic, the more human behav-

iors vary. This might decrease the corresponding probabilities

for the robot. Our proposed method is expected to enable

correlation learning even in such cases.
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