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Abstract—Dopamine neurons appear to code the discrepancy
between the reward and its prediction, and as such play a key role
in learning from positive and negative feedback. Although the
traditional view stresses the role of errors in learning, we suggest
that a temporal decrease in learning from negative feedback may
in fact facilitate the process of finding more suitable behaviors
that would reflect the change in behavioral competences of the
agent. The major premise of our approach is that omission of
the errors enables selection of different behaviors in a context
when they normally would not be selected. Therefore, it provides
more learning opportunities for fine-tuning these behaviors. We
propose that omission of the errors is tightly related to an elevated
level of dopamine that is caused by a high reward for gaining the
control over the enviromnent. Our results with a robot simulator
serve as a proof-of-concept for our approach.

I. INTRODUCTION

Obtaining a desired objective is a satisfying experience for
nearly everyone. The way of achieving the goal is not always
easy and straightforward. Sometimes many different methods
need to be explored until the goal can be acomplished. If none
of the possible solutions is helpful in attaining the goal, the
goal is memorized as impossible and later attempts abandoned.
Sometimes, however, these efforts may be reassumed when
new competences appear. This can clearly be seen in infants.
At the beginning nothing is reachable for them, as they do not
have enough skills to coordinate eye and hand movements.
Soon these first movements become successful, and infants
learn that only close but not far objects are reachable for them.
This, however, changes with the onset of crawling and later on
with walking behavior. Consequently, infants need to relearn
that attaining distant objects is possible only by locomotion,
a behavior more appropriate in this context.
Our previous experiments revealed that infants during the

transition phase to walking show a decreased ability to learn
what lies within their reachable space [1], [2]. We suggested
that the blocked ability to learn from negative outcome while
reaching makes infants fine-tune their walking skill, as a
primary motive for walking is to reach for something [3]. Thus,
we proposed that a temporal decrease in learning from negative
feedback could be an efficient mechanism behind infant learn-
ing new skills. Furthermore, we proposed that disregarding the
errors is tightly connected to the sense of control, and results

from an extremely high level of self-efficacy. In this paper, we
propose possible brain mechanisms that may lead to omission
of errors during feedback processing.
An important theoretical framework underlying our proposal

is the dynamic systems approach [4]. In this framework stable
configurations of a system are referred to as attractors. In that
sense, the decision not to reach for far objects is a stable
attractor for the infants that are not able to locomote on their
own. When a possibility of a new behavioral competence
appears, for example walking, the system should change its
decisions about appropriete behaviors. Therefore, the existing
stable attractor needs to be destabilized in order for the system
to accomodate a new one.
Another important role in our proposal is played by the

neuromodulator dopamine. Phasic dopamine signals were sug-
gested to trigger a switch in the current attractor state in
the networks of prefrontal cortex, by transiently enhancing
afferent input while potentiating local inhibitory signals thus
gating new information into the prefrontal cortex [5]. Further-
more, dopamine in the amygdala was suggested to modulate
behavioral transitions [6] that characterize development and
progression in competences. The main focus in the literature,
however, has been put on dopamine and its role in the
prediction of rewards and determination of whether predic-
tions about outcomes are violated or verified. A decrease of
dopaminergic activity owing to the omission of rewards, was
mainly interpreted as coding a prediction error or learning
signal that is supposed to trigger learning and adaptation
of future behavior [7]. Another interesting point is that the
dopamine system may act at several different timescales in
the brain from the fast, restricted signalling of reward and
some attention-inducing stimuli to the slower processing of a
range of positive and negative motivational events [8].
The main premise of our approach is that when an infant

gains control over its environment, the reward circuitry in
her brain will deliver a large reward to the executive brain
areas facilitating repeated selection of actions that led to
the gain of control. This reward is experienced even though
behavior on a shorter time scale (e.g. reaching) fails, but
progress is made on behavior spanning an extended time scale
(e.g. reaching by walking). Omitting the errors in this way



Fig. 1. On the left: Reward prediction error response of single dopamine
neuron (taken from [9]). On the right: Interpretation of the responses of
midbrain dopamine neurons in the TD model; r(t): reward; V(t): reward
prediction; δ: dopamine response (taken from [10])

enables selection of different behaviors in a context when they
normally would not be selected, thus destabilizing existing
attractors and facilitating the formation of new ones.
We review the mechanism of the reward prediction error

both in neuroscience, and in reinforcement learning theory in
the next section. After that, we present cases where learning
from negative outcome was signicantly decreased. In Sec. IV
we introduce our hypothesized neural circuitry facilitating be-
havioral state transition. The next section, presents results from
our robot simulation study where the underlying assumption
of the model were tested. We close the paper with discussion
and an outline of future work.

II. PREDICTION ERROR LEARNING

The response of dopamine neurons appears to code the dis-
crepancy between the reward and its prediction [9]. A typical
response of a single dopamine neuron is shown in Fig. 1
(on the left). During the acquisition process the dopamine
neurons increase firing rates when reward (R) is received but
not expected (no CS). Over time this increase in firing rate
is back propagated to the earliest reliable stimulus (CS) for
the reward. The dopamine cells no longer increase their firing
rate upon presentation of the predicted reward. However, when
rewards are expected but not received, the firing of dopamine
neurons drops below tonic baseline levels.
The activity pattern of dopamine neurons represents the

reward prediction error, which is central to the temporal
difference (TD) learning model [11], [12]. The TD model cal-
culates a prediction error δ(t) based on the temporal difference
between the current discounted value function γV (t) and that
of the previous time step, V (t − 1).

δt = r(t) + γV (t) − V (t − 1), (1)

where γ is a discount factor which allows rewards that arrive
sooner to have a greater influence over delayed ones, and r(t)
represents the current reward [12], [10]. The interpretation of
the dopamine neurons responses in the TD model is shown in
Fig. 1 (on the right). Before learning, no reward is predicted,

that is V (t) ≡ 0. Thus, the TD error δ(t) is the same
as the reward itself. After learning has been completed, the
predicted future reward V (t) builds up immediately after
the cue signal, causing the discounted temporal derivative
to provide a positive pulse in the TD error even if there is
no reward. At the time of reward delivery, V (t) drops to
zero and the negative temporal derivative of V (t) cancels
out the positive reward signal. However, when the reward
is omitted, there is a negative response due to the drop in
the predicted reward V (t). By acting as a teaching signal,
dopamine-mediated prediction errors are expected to gradually
train learning mechanisms to improve their predictions in an
incremental and trial-by-trial fashion [13].

III. DECREASED ABILITY OF LEARNING FROM ERRORS

Although there may be some individual differences due
to genetic variations affecting dopamine function, in general
healthy people are equally good at learning to obtain positive
outcomes and to avoid negative outcomes. People with Parkin-
son’s disease, however, show specific deficits in trial-and-error
learning from feedback. These effects were nicely explained
by Frank’s basal ganglia model [14]. Basal ganglia dopamine
levels in these patients are severly depleted as a result of
cell death. As the positive outcomes are signaled by a raise
in the firing rate of dopamine neurons, the depleted overall
dopamine levels in unmedicated patients results in a weaker
reinforcement of the stimulus. On the other hand, the errors in
reward prediction are signaled by a decrease in the firing rate
of dopamine neurons. As a result of low dopamine levels, the
errors in unmedicated patients have much stronger negative
reinforcement of the stimulus. The dopaminergic medications,
however, reverse these biases and medicated individuals with
Parkinson’s disease are better at learning from positive than
from negative feedback. The dips of dopamine required to
learn negative prediction errors are effectively filled in by the
medication, and such blunting of negative prediction errors
reduces learning from negative outcomes. Essentially, the
medication prevents the brain from naturally and dynamically
regulating its own dopamine levels, which has a detrimental
effect on learning, particularly when dopamine levels should
be low, as for negative decision outcomes.
The inability to learn from negative feedback was shown in

healthy subjects during the trust game [15]. In this experiment
information about the moral profile of the oponent was pro-
vided to the players before the game started. This information
can create a prior belief, but feedback from the game should
adjust this prior belief to reflect new evidence. However, the
experiment showed the lack of differential responses between
the positive and negative outcomes when playing with morally
good or bad partners. More specifically the activation of the
caudate nucleus differentiated between positive and negative
feedback, but only for the ’neutral partner’, and not for the
’good’ one, and only weakly for the ’bad’ one. The normal
trial-and-error learning would predict a sharp decrease in the
feedback response following violations of expectations. One
of the possible explanations suggested by the authors was that



Fig. 2. The neurocircuitry of a reward system (taken from [21]).

participants had a reward reaction to the presentation of the
morally good partner, irrespective of decision.
In patients with bipolar disorder, failures in motor learning

may result from the lack of striatal error signal during un-
successful motor inhibition. Such deficits in motor regulation
could be related to the emotional disregulation, as irritability
and decreased motor inhibition may be linked mechanisti-
cally [16]. The impulsivity was suggested to represent a
core characteristic of the disorder and to be responsible for
symptoms like hyperactivation, excitability, and hasty decision
making [17]. Patients with bipolar mania tend toward high goal
setting, have unrealistically high success expectancies [18],
and exhibit increased goal-directed activity and excessive
involvement in pleasurable activities that have a high potential
of risk [19]. Bipolar patients show elevated activation of
dopaminergic brain areas when expecting high rewards com-
pared to anticipation of no rewards, which could result from
dysfunctional nucleus accumbens activation during prediction
error processing [20]. When both, schizophrenia patients and
healthy controls, showed lower nucleus accumbens activation
upon omission rather than upon receipt of rewards as a
potential correlate of such a learning signal, bipolar manic
patients did not display a similar reduction in the activation
of dopaminergic brain regions.
We have presented different cases where learning from

negative outcome was significantly decreased. The first lesson
from these examples is that elevated state of dopaminergic
areas can lead to omission of the errors during learning like
in the case of Parkinson’s patients. The second lesson is that,
abnormal activity in the striatum (dorsal or ventral) also causes
decreased ability to learn from negative feedback. We believe
that temporal omission of errors while learning a new skill may
result from a similar mechanism. The next section introduces
the details of our hypothesis.

IV. SENSE OF CONTROL AND OMITTING THE ERRORS

The principal assumption behind our approach is that a
need for control is innate, and exercising control is extremely
rewarding and beneficial for an individual’s wellbeing [22],
and people’s ability to gain and maintain a sense of control
is essential for their evolutionary survival [23]. The hypoth-

Fig. 3. The striato-cortical loops, including the direct (”Go”) and indirect
(”NoGo”) pathways of the basal ganglia, and neural circuitry for perceiving
control. PFC: prefrontal cortex; Amy: amygdala; Nacc: nuccleus accumbens;
VTA: ventral tegmental area; SNc: substantia nigra pars compacta; GPe:
internal segment of globus pallidus; GPe: external segment of globus pallidus;
STN: subthalamic nucleus; Thal: thalamus; VPm: ventral pallidum.

esized neural circuitry that would explain the facilitation of
behavioral state transition is depicted in Fig. 3.
Similary to the proposed BG models (eg. [24]), there are

two BG pathways to selectively facilitate the execution of
the most appropriate motor commands (”Go” pathway), while
suppressing competing commands (”NoGo” pathway). The
”Go” pathway depends on D1 receptors and supports learning
from positive feedback, whereas the ”NoGo” pathway depends
on dopamine D2 receptors and supports learning from negative
feedback. These two pathways compete with each other when
the brain selects among possible actions, so that an adaptive
action can be facilitated while at the same time competing
actions are suppressed. More specifically, striatal ”Go” neu-
rons directly project to and inhibit the internal segment of
the globus pallidus (GPi). The GPi in turn disinhibits the
thalamus eventually facilitating the execution of the motor
commands. Contrary, striatal ”NoGo” neurons project to and
inhibit the external segment of globus pallidus (GPe), releasing
the inhibition of GPe onto GPi, and thus blocking the motor
activity. Dopamine modulates the relative balance of these
pathways by exciting synaptically-driven activity in Go cells
via D1 receptors, while inhibiting NoGo activity via D2
receptors.
Prefrontal cortex (PFC) is constantly involved in the ac-

quisition of new skills and knowledge, and may also play a
role in organizing other parts of the cortex [25]. Increased
activity in the medial PFC has been associated with perception
of control [22]. The PFC and the amygdala have synergistic
roles in regulating purposive behavior [26]. While the PFC
guides a goal-directed behavior, the amygdala appears to
extract the affective significance of stimuli. Communication
between these two brain regions is bidirectional and appears
to be essential in judging rewarding or aversive outcomes of
actions. The PFC was shown to inversely correlate with amyg-
dala during successful emotion regulation [27]. The inverse
relationship reflects the inhibitory pathway from the dorsal
and lateral regions of PFC to the amygdala. Furthermore, it



was proposed that amygdala drives vmPFC in a bottom-up
affective reactivity task but can be downregulated by more
dorsal and lateral portions of the PFC via the vmPFC in
a top-down reappraisal task. The optimal balance between
such bottom-up and top-down influences in a given emotional
situation was suggested to be crucial for the individual to
respond adaptively [28].
The nucleus accumbens (Nacc) is a hub for information

related to reward, motivation, and decision making [29]. The
Nacc provides a ventral pathway by which the limbic system
and prefrontal areas can influence the initiation of goal-
directed behavior [30]. Dopamine D1 and D2 agonist when
injected in the Nacc compared to the dorsal striatum facilitate
the initiation, speed and vigor of locomotion, and markedly in-
crease the frequency and duration of spontaneous exploratory
activity. Suppression of ventral striatal activity when antici-
pated rewards were not obtained has been interpreted as a
prediction error signal [20]. The Nacc receives strong, direct
projection from the amygdala and prefrontal cortex. The PFC
modulation of Nacc dopamine function appears to be bipha-
sic [31]. Under normal activity PFC provides an inhibitory
control over Nacc dopamine release. Electrical stimulation of
PFC at 10Hz, which closely corresponds to the firing rate of
PFC neurons in animals engaged in cognitive tasks decreases
dopamine release in the NAcc. However, electrical stimulation
at 60Hz that is much higher then normal activity, caused an
increase in NAcc dopamine levels. Activated Nacc neurons
project to and inhibit pallidal neurons in the region called
ventral pallidum (VPm). The suppression of tonic activity in
the pallidum then disinhibits the thalamic nucleus [32].
The ventral tegmental area (VTA) dopamine cells play a

crucial role in facilitating motivated behavior via its coor-
dinated modulation of prefrontal and Nacc circuity, as well
as its direct input to limbic structures which effects input
to the Nacc at source [33]. Moreover, with simultaneous
stimulation of both the amygdala and VTA, Nacc stimulation
more readily produces initiation of forward locomotion and
exploratory activity to novelty [30]. Dopaminergic input from
the VTA modulates the activity of neurons within the nucleus
accumbens, as well as within the PFC [34].
One possible explanation for decreased learning from neg-

ative feedback is that exercising control is highly rewarding
itself and even if the outcome of the action is not as predicted,
still the reward for gaining control is provided. That leads to
high activity in the PFC. As discussed previously, the PFC
modulates the Nacc dopamine function. This regulation is
biphasic, and at normal activity the PFC provides an inhibitory
control over Nacc dopamine release, but the PFC stimulation at
much higher than normal levels increases nucleus accumbens
dopamine. Herein, we assume that gaining control evokes such
a high PFC response. Thus, high activity in Nacc leads to
disinhibition of the VPm, and in turn dishinhibition of the
thalamus. Simply speaking, that facilitates selection of the
behaviors that led to the gain in control. This loop bypasses
the striatal areas involved in action selection (colored yellow
in Fig. 3). However, the dopamine prediction error that helps

Fig. 4. The M3-neony robot simulator.

to improve the selected behavior still reaches this areas. Our
hypothesized role of ignoring the errors is important only in
the more executive areas responsible for action selections.
The details of this model are still to be verified, but its

underlying assumptions about the role of ignoring the errors
during hierarchical skill acquisition have been tested in a
simulation study outlined in the next section.

V. SIMULATION

We investigated how ignoring the errors could help a robot
(shown in Fig. 4) to learn new skills in an approximate
optimal control framework. For the purpose of our study, the
framework had a two-layer structure. The top layer, was a
decision making layer, that was trained using standard Q-
learning to select appropriately for a given context, one of
the three possible behaviors, that is reaching, walking or
no response. Herein, we made use of a standard inverse
kinematics controller for the reaching action, and only the
walking module was trained using standard Q-learning.
The state space of the decision making module was a

discretized distance to the goal (6 states in our case changing
by 2cm). The goal of the modul was to select one of the
possible sub-modules depending on their predicted action
outcome. The module received a reward (R = 60) when the
selected action was successful, and a punishment (R = −30)
in the opposite case. The walking module had 6 different
predefined states and actions, each state was described by 8
joint angles (4 for each leg). The goal of the module was to
learn how to alternate from one state to another so that the
robot does not loose balance, and it moves forward at the
same time. The module received a partial reward for getting
closer to the goal (r = 10), and negative reward for moving
backwards (r = −3). When the robot reached the goal the
module received additional reward (r = 60). Any action that
resulted in loosing balance was punished (r = −30). In the
simulations, epsilon greedy action selection was used with
ε = 0.1.
The simulation started with a robot not able to walk. The

action of walking was available for selection, but its execution
resulted in no movement. We simulated the onset of walking at
w = 40 epochs. Until the onset of walking the distance to the



(a) The robot without the state of elation.

(b) The robot with the state of elation.

Fig. 5. The percentage of behavior selection.

object (close or far distance) was changed randomly with 40%
probability of change. After the onset of walking the object
was placed only far away from the robot. We tested the robot
in two different scenarios: without the state of elation, and
with the state of elation. The state of elation was simulated by
ignoring the negative outcomes of the actions in the decision
making layer.
The settings and thus the behavior of the robot before the

onset of walking was the same in both scenarios. Therefore,
only the results of the simulations after this period are shown.
As the robot chose actions with certain probability, the results
of the simulations may vary across trials. We present the
average results over 10 different trials. As it can easily be
seen in Fig. 5(a), the robot without elation learned that the
object is not reachable, and the probability of selecting the ”no
response” behavior was very high during the entire experiment.
The robot had almost no opportunities to practice the walking
behavior. On the other hand, the robot with the state of elation
(shown in Fig. 5(b)), after 13 epochs started to select walking
behavior more frequently making it possible for the walking
module to improve.
As the results of the simulations may strongly depend

on the values of reward, we repeated the simulation for
different configurations of rewards. We varied the values for
partial reward for getting closer to the goal in a walking

(a) The robot without the state of elation.

(b) The robot with the state of elation.

Fig. 6. The percentage of walking behavior selection.

module (r ∈ {5, 10, 15, 20, 25}), and the reward for successful
action selection (R ∈ {30, 60, 90, 120, 240}) and punishment
(P ∈ {−30,−60,−90,−120,−240}) for failure in reaching a
goal in the decision making module. The results for total of125
different configurations are shown in Fig. 6(a) and Fig. 6(b).
As it can be seen, just a few configurations for the robot
without elation allow the walking behavior to be selected
more often. Thus, introducing the state of elation, facilitated in
many cases the transition from selecting no response behavior
towards selection of the walking behavior.

VI. DISCUSSION

In terms of the dynamic systems approach [4], we may
conceptualize the role of disregarding the error as follows.
Assuming that the behavior of the infant is governed by a
dynamic system component for decision making, and another
one for execution of movement, the performance-dependent
reward signal would be one of the control parameters of
the decision making component. In the stable case where
behaviors have been learned well (for instance to reach for near
objects), negative rewards during exploratory actions would
lead to further stabilization of the already learned attractors.
If, however, the negative reward is ignored, i.e. the control
parameter is changed, existing attractors might be destabilized.
This in turn would make it easier for the system to switch to



other attractors, giving their corresponding movements more
chance to be practiced in a new context where they would
normally not be chosen. Over time, this practice might lead
to new stable attractors even under consideration of the error
signal once the effect of high dopamine state wears off.
As robots are expected to be active participants in humans

daily life, they need to be able to constantly learn and improve
their abilities autonomously. The conceptual model and its
simplified implementation in the simulation study of this paper
offer one possible mechanism for such adaptive behavior
acquisition.

VII. FUTURE WORK
As the preeliminary result with the robot simulator seems

to confirm the viability of our approach, the next step in our
research is to implement the conceptual model in more detail
and evaluate its ability to account for the behavioral data in [1],
[2]. Furthermore, we will perform a series of experiments with
a real M3-neony humanoid robot, and study the dependence
of the results on parameter settings in the simplified version
of our model presented in Sec. IV.

VIII. CONCLUSION
The core idea behind the model was that the level of sense

of control determines how much the negative outcome of the
action is taken into account for decision making. Omission
of the errors was suggested to enable selection of different
behaviors in a context when they normally would not be
selected providing more learning opportunities for fine-tuning
these behaviors.
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