
A Perceptual Memory System for Affordance
Learning in Humanoid Robots

Marc Kammer1,2, Marko Tscherepanow1,2, Thomas Schack1,3,
and Yukie Nagai1,4

1CITEC, Cognitive Interaction Technology, Center of Excellence
2Applied Informatics, Faculty of Technology

3Neurocognition and Action, Faculty of Psychology and Sport Sciences
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Abstract. Memory constitutes an essential cognitive capability of hu-
mans and animals. It allows them to act in very complex, non-stationary
environments. In this paper, we propose a perceptual memory system,
which is intended to be applied on a humanoid robot learning affor-
dances. According to the properties of biological memory systems, it
has been designed in such a way as to enable life-long learning without
catastrophic forgetting. Based on clustering sensory information, a sym-
bolic representation is derived automatically. In contrast to alternative
approaches, our memory system does not rely on pre-trained models and
works completely unsupervised.

Keywords: cognitive robotics, artificial memory, life-long learning, af-
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1 Introduction

How humanoid robots can be enabled to learn complex real-world tasks is still
an open research question. Recently, the concept of affordances has become a
popular paradigm in teaching robots. The psychologist Gibson [6] defined the
term affordances as action opportunities an observer becomes aware of by looking
at an environment or at an object; for example, a car affords to drive and a ball
affords to kick. The learning of affordances requires a robot to memorize certain
types of objects, actions, effects as well as their relationships [5].

Since real-world environments are usually dynamic, an agent acting in them
needs to adapt continuously. This requires the ability of life-long learning and
the stable memorization of relevant information. Although important, there are
only few investigations (e.g., [2]) on memory systems in cognitive robots that
enable robots to learn, inter alia, affordances.
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In this paper, we present the basis of a biologically inspired and distributed
perceptual memory system for cognitive robots. It enables the stable, unsuper-
vised, and incremental learning of perceptual information as well as the auto-
matic generation of symbolic object representations. A symbolic and therefore
discretized representation of perceptual information is a necessary requirement
for learning affordances [13].

The rest of the paper is organized as follows: First, we will give an overview
of biological and technical background information that forms the theoretical
foundation of the introduced memory approach. Second, we present a proto-
typical implementation of the developed memory and will show first evaluation
results using a real-world data set. Finally, we summarize the results and discuss
challenges, possible improvements and potential future application scenarios.

2 Memory as a Basis for Learning in Cognitive Robotics

We claim that memory is a necessary requirement for any form of learning; as
pointed out by Baxter and Browne in [2](p. 1), “cognition is inherently memory-
based”. In biological organisms even the most basic acquisition of knowledge is
already a form of learning and it is difficult, if possible at all, to define where
the process of memorization ends and the process of learning starts [10].

Neuroscientific and biological research offers a rich foundation of theories and
models which can, if not in detail but in principle, be used to simulate cognitive
capabilities such as memory by technical means. For instance, human memory
can be divided into several subsystems regarding neural correlates, temporal
aspects, and content [12].

In order to meet the capacity and time constraints of life-long learning sys-
tems, stored information needs to be organized efficiently, which is summarized
by the term cognitive economy [7]. In particular, the amount of data must be
reduced by mechanisms such as categorization to meet the storage and time
requirements. In [4] the principle of cognitive economy is satisfied by using Self-
Organizing Feature Maps to create a heteroassociative memory which learns
categories based on prototype representations. But the network structure is not
incremental and therefore limited in its capability to incorporate novel data.

A further problem arising in life-long learning systems is the stability-plasticity
dilemma [8]: How can a system retain old memories but still learn new informa-
tion? The memory system introduced in [11] approaches the stability-plasticity
dilemma by adopting a biologically inspired hierarchical visual pathway process-
ing. However the solution does not allow explicit symbolic access to the learned
entities, which would be beneficial for applying reasoning methods in the context
of learning affordances.

In [15], Sun discusses the technical representation of memorized information.
He favors a combination of subsymbolic and symbolic representations, as real-
ized within the cognitive architecture Clarion [16]. The Clarion architecture
simulates human mental processes, which works in simulation but not in a real
world environment.
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Hanheide and his colleagues [9] presented a perceptual memory system for
learning faces of interaction partners in a real-world scenario. It uses pre-trained
models for face detection and feature extraction. Known interaction partners are
classified by means of support vector machines following an one-vs-rest approach.
If unknown persons appear, the corresponding face patches are used to train a
new classifier. The one-vs-rest approach requires the extracted face patches of all
known interaction partners to be stored, which is not compatible with cognitive
economy and puts the scalability of the system in question.

Although related works from the field of affordance learning do not focus on
memory aspects in an overall cognitive architecture as investigated in [2], they
incorporate at least a very simple form of memory to represent objects from the
real world. For example [13] and [18] use X-Means clustering for a perceptual
discretization and memorization to apply a high level reasoning, which limits
the number of objects that can be used severely.

As the goal of our architecture is the incremental and online learning of affor-
dances using only few training samples the architectural memory has to fulfill the
above mentioned criteria. Therefore, we introduce a perceptual memory system
based on Adaptive Resonance Theory (ART) [8] networks, which learn online,
incremental, unsupervised and constitute a solution of the stability-plasticity
dilemma. Similar to the Clarion architecture, we use a subsymbolic feature
processing mechanism to form a symbolic feature representation at the top level
of the memory. A detailed explanation of the developed architecture is given in
the next section.

3 Our Perceptual Memory System

We met the above-mentioned requirements by creating a distributed, hierar-
chical, incremental perceptual network structure, composed of different ART
networks. These ART networks are capable of unsupervised incremental online
learning and can be trained on few training samples. As mentioned before, the
long term goal of this work is the creation of an interactive learning architecture
that shall be used in an online affordances learning scenario. Each displayed
constituent is described in this section.

Our so far preliminary cognitive architecture is able to detect objects that
are introduced into a static scene by observing changes. Detected objects are
rotated according to their first principal axis to mimic the process of mental
rotation [14] and scaled to a common size. These normalized images are further
processed according to Fig. 1. The normalized object patches are split into five
partitions, as indicated by the vertical lines in Fig. 1. For each of these partitions
several histograms reflecting the frequency of the occurrence of specific colors
are determined. The colors are defined by ranges in the hue (H) plane of the
HSV color space. Each range was defined manually and corresponds to the color
impression it triggers in the human perceptual system. Finally, the histograms
of all partitions that correspond to an individual color are concatenated and
fed as input into an ART network. These networks learn efficient sub-symbolic
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Fig. 1. Processing of the normalized object patches. After splitting an image into
five disjunct partitions, histograms are computed for several color ranges. These color-
specific histograms are concatenated and fed into ART networks. Finally, the indices of
the best-matching node of each ART network are concatenated to yield object-specific
symbolic signatures.

representations of presented input samples which are referred to as categories.
For each presented object patch, the indices of the best-matching categories
form an object-specific signature, which we regard as symbolic representation
of an object. The common activation of all ART networks therefore provides a
distributed, unique representation of an object image i, which we term object
signature, referring to it as si.

si = (si1, si2, ..., sin) (1)

Such a distributed feature representation allows the system to identify certain
features in reasoning processes as important or irrelevant. This is important, for
example in the task of affordance learning. In order to measure the dissimilar-
ity between two object signatures si and sj , we apply the hamming distance
∆(si, sj).

∆(si, sj) =
1

n

n∑
k=1

d(sik, sjk) , with d(sik, sjk) =

{
1 if sik 6= sjk

0 if sik = sjk
(2)

The hamming distance ∆(si, sj) counts the number of positions at which
two signatures differ. The results are normalized to the interval [0, 1], where 0
means that both object signatures are identical and 1 means that both object
signatures differ at all positions.

4 Experimental Results

We compared three different ART networks: Fuzzy ART [3], TopoART [17] and
Hypersphere ART [1]. All of these networks allow for stable and incremental
learning of new objects. But they differ in their activation functions and their
sensitivity to noise. The goal of the evaluation process of our perceptual memory
architecture is to identify the best parameters for each used ART-network, as
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well as to evaluate the performance of each ART-network in the given scenario
and if it is suited or not.

We used the described preliminary cognitive architecture to create a real
world data set by recording 25 different objects with 10 variants for each object,
which resulted in an overall set of 250 images. This set was split in disjunct
training and test sets, each containing 125 images. Using a real world setup
resulted in different variants for each object. In each recording attempt, the
position of the object might vary as well as the lighting conditions or even noise
can lead to different object appearances. Figure 2 shows five of the 25 different
objects with all of its variants.

Fig. 2. Recorded and normalized images of five exemplary objects. For each object
(rows) ten different images (columns) were acquired and processed automatically. In
some very rare cases, the images were incorrectly cropped.

The best parameter values for ρ (all networks) and βsbm (only TopoART)
were determined by grid search. Due to the small amount of available data,
all networks were trained in fast-learning mode (β=1) and the noise reduction
mechanism of TopoART was disabled (ϕ=1,τ≥1). The selected parameters were
used in the test phase.

As evaluation criteria, two different measures denoted by dw and db were
used. The first measure dw, given in (4), represents the dissimilarity each object
has within its variants. A low value is desirable, as it indicates that the signature
of the variants of the objects are similar to each other. θ and ϑ denote the number
of all objects and their variants, respectively. In our experiments, θ = 25 and
ϑ = 5 were used for training as well as testing. Then the number of all hamming
distances an object can have within its own variants is % = 1

2ϑ · (ϑ − 1). Then,
the mean over all % hamming distances for one object o is given by dow.

dow =
1

%
·
ϑ∑
i=1

ϑ∑
j=i+1

∆
(
soi , s

o
j

)
(3)

If an specific object o has three variants ϑ=3, for example, an overall of % = 3
hamming distances can be calculated which results to dow = 1

%

(
∆
(
so1, s

o
2

)
+
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∆
(
so1, s

o
3

)
+∆

(
so2, s

o
3

))
. The mean of dow over all objects is denoted by dw.

dw =
1

θ

θ∑
o=1

dow (4)

The second measure db, given in (6), represents the dissimilarity each object
variant has to all variants of the other objects and is therefore termed the between
object similarity. A high value indicates a high dissimilarity of variants between
different objects which is preferable. The mean dissimilarity of a specific variant
i of an object o to all variants of other objects is denoted by db

(
soi
)
.

db
(
soi
)

=
1

(θ − 1) · ϑ

θ∑
o′=1
o′ 6=o

ϑ∑
j=1

∆
(
soi , s

o′

j

)
(5)

db denotes the mean dissimilarity averaged over all objects and their variants.

db =
1

θ · ϑ

θ∑
o=1

ϑ∑
i=1

db
(
soi
)

(6)

For parameter optimization, dw should be low, while for db high values are
desired. This relationship is captured by the goal function G.

G = db − dw (7)

For the maximum of G, each individual object is represented by a set of similar
variant signatures, while the signatures of different objects differ strongly. The
chosen parameters at the maximum of G are therefore optimal.

Figure 3 depicts an exemplary evaluation of the FuzzyART network, showing
dw, db, and the goal function G averaged over ten training trials depending on
the vigilance parameter ρ. In addition, it compares the goal functions for all
ART networks.
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Fig. 3. Training results of an exemplary FuzzyART network (left) and the correspond-
ing goal functions G of all ART networks (right) depending on ρ.
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Table 1. Test results and their standard deviations calculated with the optimal param-
eter settings for each network. The settings for TopoART were independently optimized
for its components TopoART a (I) and TopoART b (II).

FuzzyART HypersphereART TopoART a/b (I) TopoART a/b (II)
ρ = 0.696 ρ = 0.71 ρ = 0.694 & βsbm = 0 ρ = 0.388 & βsbm = 0

dw 0.0598857 0.0221714 0.0626286 / 0.096 0 / 0.0626286

db 0.135429 0.117171 0.129229 / 0.240762 0 / 0.129229

σw 0.305495 0.216834 0.318894 / 0.393548 0 / 0.318894

σb 0.0097925 0.0155369 0.010532 / 0.0145529 0 / 0.010532

Finally, the estimated parameters were used in the test phase to calculate
the hamming distances on the separated test set. The results summarized in
Table 1 indicate that HypersphereART is best suited for the given setup as its
difference of db − dw has the overall highest value which mean that variants of
the same object are represented by similar signatures and that the signatures
between different objects have a greater deviation.

5 Conclusion and Outlook

In this paper, we presented a distributed, incremental perceptual memory system
tailored to the task of learning affordances in an interactive real-world scenario.
In order to fulfill the requirement of stable life-long learning, we applied different
ART networks (Fuzzy ART, Hypersphere ART, and TopoART) to learn sub-
symbolic object representations. Furthermore, we introduced the idea of using a
distributed but common activation of different ART networks to create a bottom-
up symbolic object representation based on the respective best-matching nodes.

In our experimental setup, Hypersphere ART performed best. Furthermore,
the results of Fuzzy ART and TopoART are very similar to each other. Therefore,
we conclude that the Euclidean distance used for activating nodes in Hypersphere
ART is more suited to the task at hand than the city block distance utilized by
Fuzzy ART and TopoART.

Our future research will focus on additional perceptual input features for
categorizing objects and enriching the object signature, e.g. by shape and size
information. Also especially a recognition test, based on an enlarged object sig-
nature and a distance measurement, as for example the used hamming distance
has to be investigated. Another future investigation is the comparison of the
ART networks with networks that suffice most of the required criteria but do
not belong to the ART family, as for example growing self organizing maps or
growing neural gas.
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