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Abstract—This paper proposes a method for acquiring cate-
gories in one modality and mappings between these categories
and those in other modalities. Subjective consistency through
multimodal mappings is introduced to judge to what extent a
perceived signal and inferred ones from other modalities are
reliable for categorization and mapping. Based on the proposed
method, a simulated infant robot learns categories and mappings
by using not only statistics on one perceptual modality but
also mappings among the categories in other modalities. The
proposed method enables partly simultaneous categorization and
mappings.

I. INTRODUCTION

In modeling infant development, it is one of the biggest
mysteries how infants acquire categories from their sensorimo-
tor experiences such as its own articulation, the auditory per-
ceptions of the caregiver utterances, and the visual perception
of objects. It is supposed that around 3-month-old infants can
form some categories from their perceptual information [1],
[2]. Statistics of perceptual information are important for such
infant categorization (for example, see [3] for audition and [4]
for vision). Meanwhile, it is pointed out that categorization
is based not simply on the currently perceivable properties
of the instances being categorized [5], and more precisely
that infants take advantage of both perceptual statistics and
theories they hold as they acquire some categories [6]. A
recent work on infant object categorization by naming [7]
suggests that for 12-month-old infant, ”applying the same
name to a set of distinct objects (e.g. a duck, raccoon, and
dog) highlights the commonalities among these objects and
supports the formation of an inclusive category (e.g. animal).”
It is also reported a similar effect in 3- and 4-month-old infants
[8]. That is, the formulation of categories of one modality
depends not only on statistical experiences of its modality but
also on prior knowledge of other modalities in early infancy.
In order to enable to utilize such prior knowledge, it seems
that infants need to acquire mappings of categories among
different modalities A question investigated in this study is
how we can model the simultaneous developmental processes
of categorization and mapping, which depend on each other.

Interdisciplinary approaches are needed since it is difficult
to obtain a solution to the question under one single disci-
pline. Among these approaches, a constructive approach seems
promising [9]. It aims at understanding human’s cognitive
development by using physical and virtual robots based on
the computational models inspired by neuroscience, cognitive
science, and developmental psychology. As one of these
studies related to the question above, we have proposed a
method of simultaneous development of vocal imitation and
lexicon acquisition with a mutually constrained multimodal
mapping [10]. The point was introduction of the subjective
consistency to judge whether to believe the observed experi-
ences (external input) as a reliable signal for learning or not.
A simulated infant robot learned correct mappings among the
representations of its caregiver’s phonemes, those of its own
phonemes, and those of objects even when caregivers do not
always give correct examples as real situations. However, they
assumed that the input data were already categorized although
mapping is actually not always after categorization. Rather,
both are simultaneous processes.

Imagine that the robot is going to acquire categories of
attended objects and also learn mappings between visual per-
ceptions of these objects and other sensorimotor experiences,
such as the motor commands of its own articulation and
the acoustic features of sounds heard, which indicates labels
of objects. If the robot knows the correct correspondence
between objects and those labels, robot can form a category
of objects by classifying them according to the commonality
of those labels. Also if it has a correct category of objects,
the robot can learn the correct mapping between objects and
those labels only by associating one object category with its
label. However, it is not guaranteed to obtain such a correct
association until these categories or mappings mature.

In this study, we extend the previous work [10] by reusing
the idea of subjective consistency of multimodal mappings to
modify the observed input for making system learn consis-
tent categorization and mappings among multimodalities. In
this paper, we report a preliminary computer simulation of



simultaneous categorization and mapping. As a first step, we
dealt with an easier learning problem assuming that one of
three input layers receives continuous vectors to be categorized
while the rest two receive discrete inputs(symbols) as they
have finished the categorization process.

The rest of this paper is constructed as follows: First
we explain the learning model and introduce the proposed
mechanism for categorization through multimodal mappings.
We then show the experimental results in computer simula-
tions. Finally, we verify that the proposed mechanism enables
to acquire categories based on correct mappings between
categories of different modalities .

II. ASSUMPTIONS

Suppose that a robot and a caregiver take turns in an
environment with objects and labels. At each step, the robot
looks at an object or vocalize a label. Then the caregiver selects
one of three types of behavior: vocalization, showing, and
labeling. The robot behavior is assumed to be immature, so
the caregiver does not always correctly recognize its utterances
or the focus of attention. Therefore, the caregiver is designed
to fail to perform such behavior with fixed probabilities that
represent not only the robot immaturity but also the tolerance
in the caregiver’s response. Each type of behaviors is defined
as follows:
Vocalization: the caregiver vocalizes the label corresponding

to the label uttered by the robot, or utters any labels
not corresponding to it. Due to the robot’s immaturities
for articulation and the caregiver’s insensitivities for its
utterance, the caregiver is supposed to correctly imitate
robot’s vocalization with probability pV .

Showing: the caregiver shows the object whose label uttered
by the robot, or shows a different one. Due to the
robot’s immaturities for articulation and the caregiver
inabilities to draw the robot’s attention, the probability
that the caregiver correctly shows a corresponding
object to the robot’s utterance is set to pS .

Labeling (calling): the caregiver utters the label of the ob-
ject which the robot is looking at, or utters another
label. Due to the robot’s immaturities for following the
caregiver’s attention and the caregiver’s inabilities to
draw the robot’s attention, the caregiver is assumed to
successfully make the robot see an object and hear a
sound label that refers to the object with probability
pL.

In this situation, the robot learns three types of mappings:
one is between its own utterance and caregiver one, another
is between caregiver’s utterance and an object and the other
is between an object and its own utterance (see a triangular
mappings at the upper part of Fig.1). The robot also forms cat-
egories of objects (see the bottom part of Fig.1) in parallel. The
robot basically tries to make a connection between two data
simultaneously observed on different modalities. However, it
is noted that they involve both consistent and inconsistent
pairs of data for correspondence among layers. The reason is
that the caregiver gives examples of the correct mapping with

Fig. 1. Multimodal mapping model with an uncategorized representation

probabilities pV for vocalization, pS for showing and pL for
labeling (hereinafter, these probabilities are collectively called
Maternal teaching rate). Otherwise, the caregiver says a label
and/or shows an object independently of the robot’s utterance
or attention.

III. MULTIMODAL MAPPING MODEL WITH
UNCATEGORIZED REPRESENTATION

In this study, we extend our previous model [10] to deal
with simultaneous categorization and mapping. Fig.1 shows
the multimodal mapping model that consists of three different
representations: one corresponds to the robot’s articulation
space a ∈ <Mi , which is assumed to be determined from
motor commands of robot’s vocalization, another does the
sound space s ∈ <Mc , which is assumed to be determined
from acoustic features of sounds uttered by the caregiver, and
the other does the object space o ∈ <N determined from
image features of the attending object f ∈ <Nf . The robot
can obtain one of input vectors on each representation when
it vocalizes sounds, when it listens to caregiver’s utterances, or
when it looks at an object. Each element of these vectors for
the robot’s vocalization and the caregiver’s one is assigned to
each node of the corresponding layer. On the other hand, one
for the attending object is a two dimensional continuous vector
that is a simplified representation of the continuous image
feature for object categorization. The object vector is converted
to the node activity values using Gaussian mixture models
whose likelihoods of kernels are matched with such values.
By repeating the interactions, the robot learns three types of
the connection weight matrix: WAS , W SO and WOA.

A. Learning rules of mappings

We employ the mutually associative Boltzmann Machine
(hereinafter, BM) [11] as a learning method for mappings.
BM is one of the stochastic neural networks and learns the
relationship between two observations.

In BM, the output vector y corresponding to observed
input vector x is sampled from the following probability
distribution:



Pr (ym = 1|W ,x) =
1

1 + exp (−
∑

n wnmxn)
, (1)

where ym is the m-th element in y and xn is the n-th element
in x. W is the connection weight matrix between the nodes
of input and those of output, and wnm is the element of the
n-th row and the m-th column in W .

Suppose that the one representation (hereinafter, the first
input representation) receives input vector v1 and then another
representation (hereinafter, the second input representation)
receives other input vector v2. The relationship between these
two input vectors are learned as following procedures:

1) Two input vectors v1 and v2 are clamped over each
representation. Then, the network was allowed to reach
equilibrium. Statistics pnm about how often the n-th
node in the first representation and the m-th node in
the second representation are paired with each other.

2) Only one input vector v2 is clamped over the second
representation. Then, statistics p′nm about how often the
n-th node in the first representation and the m-th node
in the second representation are paired with each other
in turn.

3) Connection weight wnm between the n-th node and the
m-th node is calculated with two statistics pnm and p′nm
as follows:

wnm = wnm + α (pnm − p′nm) . (2)

At each learning step, the robot calculates the amount of
updating not only from the first representation to the second
one but also from the second one to the first one. That is, in
the above step 2), statistics p′nm is also calculated by clamping
the first input vector v1. Connection weight W is updated so
that the correspondence of the two representations is constant
by duplicating the above.

B. Learning rules of categories

In this study, we employ Gaussian Mixture Models (here-
inafter, GMMs) [12] as a categorization method. GMMs are
a generative probabilistic model.

GMMs are a liner superposition of K component Gaussian
densities as follows:

Pr(x) =

K∑
k=1

πkN (x|µk,Σk), (3)

where πk is a mixture weight of the k-th component. µk is
the k-th mean vector and Σk is the k-th covariance matrix.
Gaussian function N (x|µk,Σk) is shown as follows:

N (x|µk,Σk) =
1

(2π)D/2

1

|Σ|1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
,

(4)
where, x and µ are the D dimensional vectors, Σ is D ×D
matrix and |Σ| is the determinant of Σ.

(a) First, one observation and two predictions
through multimodal mappings are obtained.

(b) Next, these three signals are biased by each
other. Then, integrated signal is calculated based
on consistency of them.

Fig. 2. Proposed mechanism: Integration based on consistency through
multimodal mappings

Suppose that the L sets of D dimensional input vector x
was observerd. Each parameter can be estimated by maximum
likelihood using EM algorithm in the following steps.

1) E-step: Responsibility of the k-th component to the l-th
input is calculated as follows:

γlk =
πkN (xl|µk,Σk)∑K
i=1 πiN (xl|µi,Σi)

. (5)

2) M-step: Then, each parameter is updated as follows:

µk =
1

Lk

N∑
i=1

γikxi (6)

Σk =
1

Lk

N∑
i=1

γik(xi − µk)(xi − µk)
T (7)

πk =
Lk

L
, (8)

where,

Lk =
L∑

i=1

γik. (9)

Each parameter is updated so that GMMs model the statis-
tical nature of input distribution by duplicating the above.



C. Integration method based on consistency through multi-
modal mappings

In the previous study, we proposed a learning method for
multimodal mappings based on subjective consistency [10].
We extend our proposed method to deal with categorization.
As mentioned in the previous section, GMMs can model the
statistical nature of input distribution and form some categories
as a function of it. However, if a formed category has no
correspondence with a category in other modality, it interferes
learning of the mapping. For example, imagine that the robot
observes some comparable objects which have no consistent
label. If the robot forms categories based on only perceptual
statistics, it successfully forms the object’s category. However,
since these objects do not correspond to one label, the category
should be wasteful for learning mappings. Moreover, if the
robot misunderstands the object as any labeled objects, it can
learn wrong mappings. Furthermore, due to the limitation of
categorization capacity or the difficulty in predetermining the
appropriate number of categories, for example the number of
kernels of GMMs that should be assigned for each category,
it might be a socially feasible strategy to ignore those that
are not labeled by the caregiver instead of trying to categorize
everything in the world and fail in forming broad categories.
Therefore, in this section, we proposed the method to avoid
such a problem by forming any categories depending not only
on perceptual statistics but also on predictions through other
modalities.

Suppose that the D dimensional external signal xex and its
label are observerd. The activities of the nodes in the layer
of the observed label are calculated and propagated to the
nodes in the layer of object. Since there are two routes of
propagation, one is the route from the input layer to the object
layer and the other is one via the other layer, two prediction
node signals are generated by the propagation. The prediction
node signals from the first route is denoted by ain each of
which element is binary value representing the likelihood of
each kernel of GMMs while one from the second route is
denoted by aby . The prediction node signals ain and aby are
converted to corresponding continuous vectors xin and xby

respectively by using GMMs as follows (see Fig.2(a)):

xn =
1∑

m∈{in,by} a
n
m

K∑
m

anmN ′(µm,Σm), (10)

where N ′(µm,Σm) represents a manipulation to generate a
Gaussian noise whose average is µm and variance is Σm.
Then, integrated signal is calculated as follows (see Fig.2(b)):

x̂ = f(xex,xin,xby) = λexx
ex + λinx

in + λbyx
by, (11)

where λn (n ∈ ex, in, by) represents the subjective consisten-
cies of each learning signal, each of which indicates how it is
consistent with others, and is calculated by

Fig. 3. The environment in simulation

λn =
exp

(
−en/σ

2
)∑

m∈{ex,in,by}

exp
(
−em/σ2

) , (12)

where σ is the parameter of sensitivity for the consistencies.
en represents the consistency of xn and is calculated with the
distances of xn from other signals such as

en =
∏
l/∈n

∣∣∣∣xn − xl
∣∣∣∣. (13)

In short, the closer to the other two signals, the bigger λn is,
based on Eqs. (12) and (13).

By creating signals by using not only observed input but
also predictions through multimodal mappings, the actual
signal is biased to be more feasible for both of categorization
and learning mappings. That is, if mappings are mature in
part, categories are formed based on predictions calculated
from correspondences with labels. If mappings are immature,
categories are formed based on statistics of observations and
predictions calculated from correspondences with labels. This
may enable that categories are formed not only statistical
nature of inputs but also mappings between categories of other
modalities.

IV. SIMULATION

To show how the proposed method enables the categoriza-
tion and learning of multimodal mappings simultaneously, we
conducted a computer simulation of caregiver-robot interaction
,as described in Section II.

A. Settings

We assume that the robot can extract labels from the
caregiver’s utterances and vocalize a label, but it does not
know which label uttered by the caregiver corresponds to one
uttered by oneself. Let s ∈ <M and a ∈ <M be an input that
represents which M labels are used for the caregiver and the
robot, respectively. For example, if the robot’s utterance was
/ai/ that consists of the i-th label, the i-th elements of a was



set to 1, and all other elements were set to 0. We also assume
that each object has a distribution in its feature space and robot
can observe object features as D dimensional data. f ∈ <Nf

is the feature vector of the observed object. Then, o ∈ <N

is the node activation vector in the layer for object feature
and represents how likely each ID of the kernels of GMMs
(i.e., object category) is estimated from the input feature f .
For example, if it is estimated the k-th object from f , the k-th
element of o was set to 1, and the other elements were set
to 0. However, note that it is unknown for the robot which
object feature is generated from which of N kernels of true
GMMs and which object corresponds to which labels in the
other layers.

In the following experiment, we assume that (1) there are
four kinds of objects labeled by A, B, C, and D, (2) the robot
can produce four kinds of utterances A, B, C, and E, that are
correspond to labels of objects, and (3) the caregiver produces
either of four kinds of utterances A, B, C, and F, that are
correspond to labels of objects. The above assumptions (1) and
(2) mean a situation where the robot does not produce the label
of objects that have features of distribution D, but produces
another label E that has no correspondence with objects. In
other words, M and Nf are set to 4. The assumptions (1)
and (3) mean a situation where the caregiver does not pay
attention to objects that have features of distribution D, and
often produces another label F that does not correspond to
any specific object. Furthermore, we suppose the number of
the kernel N , that is the maximum number of categories that
the robot can form, is 3 which is less than the number of
kinds of objects that the robot observes. In such a situation,
it might be an adaptive solution to regard the object D as not
worth being categorized since it is difficult for the robot to
find corresponding labels in other layers.

The following parameters for the learning mechanism were
empirically selected for good performance: ε = 0.2, L =
1000, σ = 1.0. We compared the learning performances
of the proposed method (hereinafter integrated) to those of
another method not with integration but with statistics of input
(hereinafter statistical). The number of the dimension of object
features D was set to 2 as a simple case.

B. Results

We ran 10 sets of simulation with 10,000-step interactions
for different sets of maternal teaching rates: pV , pS , and pL.
These parameters were set to equal each other as pa and
varied from 0.7 to 1.0. Higher pa means higher percentage
of correct pairs of data given by the caregiver to the robot.
For example, in the pa=1.0 case, the caregiver always gave a
label corresponding to the robot’s attending object. However
she randomly selected one label out of A, B, C and E and gave
it when the robot saw objects that have features of distribution
D. Therefore, it did not always perceive corresponding pairs
of labels and objects even if the pa=1.0. Fig.4 shows the final
performance with respect to pa. Performance was evaluated
after 10,000-step interactions by testing 20,000 data generated
from distributions which have paring sets (Distribution A, B
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Fig. 4. Final performances in the each condition: solid curves with filled
squires shows integrated and broken curves with blank triangles shows
statistical

and C) and checking whether the corresponding labels (Label
A, B and C) were recalled. We can see that the performances of
the integrated (solid curves with filled squires) are apparently
higher than those of statistical (broken curves with blank
triangles).

Fig.5 (a), (b) and (c) show the representative results of cat-
egorization through simultaneous categorization and mapping.
We can see in statistical (Fig.5 (a)) that two distributions cor-
responding to input distributions C and D respectively are suc-
cessfully formed. However, one mixed distribution correspond-
ing to input distributions A and B is also formed. This mixed
distribution should interfere in learning mappings between
label A and Object A or label B and Object B. This causes
the low performance of statistical. On the other hand, the
performance was high in integrated since three distributions
corresponding to input distributions A, B and C are almost
successfully formed (Fig.5 (b)). This shows that integrating
a perception and predictions through multimodal mappings
based on subjective consistency enables acquiring categories
depending not only on statistics of perceptual information in
one modality but also on mappings between categories of other
modalities. However, if pa is lower, performance of integrated
is low (pa = 0.7 in Fig.4) and distributions after learning
become more complex(one mixed distribution corresponding
to input distributions A and D is formed in Fig.5 (c)). This
indicates that due to simultaneous categorization and mapping,
it is not guaranteed to converge the correct mapping and
categorization if the caregiver almost does not give the correct
correspondence to the robot. Other mechanism or bias might
be needed in such a situation. Although the use of subjective
consistency to modulate simultaneous learning improved the
performance compared to one without such modulation.

V. CONCLUSION AND DISCUSSION

In this paper, we proposed a method to bias perception based
on the subjective consistency through multimodal mappings to
acquire categories and mappings simultaneously. Subjective
consistency, which evaluates its closeness to other signals,
is used to weight how it contributes to forming categories
and learning of the mappings. A computer simulation of
caregiver-robot interaction demonstrated that our proposed
method enabled simultaneous categorization and mapping. Our
proposed method makes the robot to percept observations
as more feasible signal to form categories and to learn the
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Fig. 5. An example of acquired distribution of categories after learning

mappings. However, if the robot has almost no experiences of
the having correct correspondences such as in a low Maternal
teaching rate, it is not guaranteed to converge the correct
mapping and categorization.

In the current work, the tendency of the caregiver behavior
was assumed to be fixed. However, it is indicated that a
caregiver facing to her infant shows infant-directed specific
behaviors (e.g. Matherese [13] and Mothonese [14] ), and
this type of behavior could be scaffolding for the infant to
learn several abilities. Also in real situations, the caregivers
are very adaptive if they find that infants misunderstand the
categorization and mapping, so they directly teach infants
by sending correct information. Such scaffolding or direct
teaching by caregiver might help infants to highlight differ-
ent perception among categories or wrong categories already
formed. Therefore, we model such a caregiver in simulation
and try to verify how such scaffolding helps infant to acquire
categories and mappings. We also need to verify to what extent
subjective consistency contributes to simultaneous categoriza-
tion and mapping in such a case.

Furthermore, it has been reported that children exhibit
mutually exclusivity bias in language acquisition. That is, they
have a tendency to associate novel word with novel object
[15]. Such a prior bias might make infant not to confuse or
any other words different categories, and therefore facilitate
learning mappings. Yoshikawa et al. [16] proposed a method
based on mutually exclusivity for associative learning of multi-
module, and showed the efficiency of the bias. Trying to fuse
these mechanisms is needed.

Several assumptions were introduced in the current experi-
ment (e.g. a constant number of clusters and a two dimensional
feature space) to focus on one aspect of difficulties in find-
ing correspondence. Therefore, we need to test whether our
proposed method is useful also in more realistic scenarios.
For example, by using methods to determine the appropriate
number of clusters (e.g. maximum likelihood robust clustering
for GMMs [17]), we can release the assumption of a constant
number of clusters from the current algorithm. Moreover,
several methods for clustering in high dimensional spaces
(e.g. high-dimensional data clustering for GMMs [18]) are
considered to be applied to cope with higher dimensional input
vectors, such as those from sensors and motors of real robots.
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