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Abstract

Regardless of interaction with less frequent imitative caregivers, infants can obtain the vowels

of the caregivers’ mother tongues, by finding the correspondence between their own vowels and

the caregivers’ ones. This paper proposes a learning method based on the auto-mirroring bias

(hereafter, AMB) with a self-evaluation mechanism to find such correspondence. The AMB is the

robot’s anticipation of being imitated by its caregiver, and has a role of narrowing the candidates for

the correspondence. The self-evaluation mechanism biased by the AMB works as outlier (incorrect

mapping) rejection expecting that the outliers appear less consistently than the correct mappings

do in the interaction. Results from several computer simulations with real sound wave recording

from a human experimenter show that the robot could successfully achieve being imitated by the

proposed method even if interacting with a caregiver who would seldomly imitate its utterances.

keywords: an Auto-Mirroring Bias, self-evaluation, less imitative

1 Introduction

Humanoid robots have been expected to communicate with humans through the modalities such as

voice and gestures which humans utilize. However, due to the difference in physical structure between

them, it is difficult for humanoid robots to reproduce the observed humans’ actions as they are. This
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difference seems to make it also difficult to understand human actions since the cognitive process to

reproduce them seems crucial for it, as conjectural from the findings of mirror neuron [1]. On the other

hand, human infants seem to successfully solve the same issue regardless of the different articulation

structure in the developmental process of language faculty.

Previous studies have demonstrated that a population of computer-simulated agents could self-

organize shared vowels through mutual imitation [2, 3, 4]. Fukui et al. [5] showed that the robot can

acquire consonant sounds by optimizing the parameters of articulation to minimize the discrepancy

between its sound and humans’. However, these studies [2, 3, 4, 5] focused on situations in which all

agents can generate sounds in the same region of the acoustic feature space. In other words, they did

not consider imitation between dissimilar bodies, which is addressed in this paper.

Kuhl et al. [6] shows that caregiver’s social approaches to infant’s behaviors are important for

its language acquisition. Especially, developmental psychologists have suggested that infant’s vowel-

like cooing tends to invoke utterances by its mother’s imitation [7] and maternal imitation effectively

reinforces infant vocalization [20]. However, the mechanisms underlying such facilitation of the infant’s

language acquisition, namely how an infant learns from a caregiver as well as how a caregiver guides an

infant, are still not well understood. As one promising approach to answer these questions, cognitive

developmental robotics [9] (hereafter, CDR) has been focused on the mechanisms necessary for such a

developmental process.

Yoshikawa et al. [10] constructively showed that imitation by the caregiver in response to infant’s

vowel vocalization plays an important role in its vowel acquisition. Considering the well-known ”percep-

tual magnet effect” [11] by which a human’s perception of phonemes is biased to his/her own category,

Miura et al. [12] showed that the utterances of an infant robot could be led to clear vowel sounds through

mutual imitation with its caregiver. In addition to this magnet bias, Ishihara et al. [13] have modeled

what they call an auto-mirroring bias, which is also necessary for the process of sharing vowels between

an infant and its caregiver. It is considered from the fact that in imitative interactions, a caregiver

anticipates being imitated by her infant and therefore, perceives the infant’s sounds as more closely

resembling her precedent utterances. The guiding process of the infant’s vowels toward more natural

ones for the caregiver was considered in their simulation based on these two biases on the caregiver

side. However, they have not considered the effect of these biases on the infant side. It would not be

surprising if infants had an auto-mirroring bias. Though it is supposed that the magnet bias (perceptual

categorization) has not yet worked since infants do not have vowel categories.

In these studies [10, 12, 13], it was assumed that the caregiver always imitated single vowel-like sounds

of the robot but did not utter anything else. However, the mother might not be always motivated to

imitate them or might sometimes fail to listen to or to imitate the infants’ voice since the infant’s

vocalization is not yet matured. Louis et al. [14] observed the interaction between mothers and their

from 7- to 10-months-old infant and report that the caregiver’s vocal imitation of the infant’s utterances

occurred only in 20 % of cases where the infant utters. To faithfully synthesize the developmental

process, we have to consider how a robot can realize being imitated by the caregiver in such low chance
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of being imitated.

Infants are supposed to be able to discriminate any vowels before six-months, and their discriminable

vowels are gradually tuned to their caregivers’ mother tongues after that [15]. This process can be

regarded as a mapping process between the caregiver’s vowels and some of the infant’s vowels through

interaction. A challenge of CDR is that an infant robot should find this mapping even if being imitated

less frequently in accordance with the data reported by Louis et al. [14]. Here, we propose a learning

method based on the auto-mirroring bias (hereafter, AMB) with a self-evaluation mechanism to find

the correspondence between the caregiver’s utterances and the robot’s own ones. The AMB is the

robot’s anticipation of being imitated by its caregiver, and has a role of narrowing the candidates for

the correspondence. The self-evaluation mechanism biased by the AMB works as outlier (incorrect

mapping) rejection expecting that the outliers appear less consistently than the correct mappings do

in the interaction. Due to the low chance of being imitated, the early mapping is rather poor (chance

level), but it gradually improved by the method. Once the robot found the correct mapping, it utters the

vowels that can be more easily imitated by the caregiver which helps to obtain more correct mappings.

Results from several computer simulations with real sound wave recording from a human experimenter

show that the robot could successfully achieve being imitated by the proposed method even if interacting

with a caregiver who seldomly imitates its utterances.

2 Basic Idea and Assumptions

Louis et al. [14] observed ten-minutes of unstructured plays, when a mother and her 7- to 10-months-old

infant freely play with each other, and analyzed maternal responses appeared in them. They reported

that the caregiver responds to them in imitative manners only in 20% of all cases where the responses

were made via voice. What makes matters worse is that the physical structures to produce vocal sounds

of the mother and her infant are different from each other. Therefore, the caregiver cannot reproduce

the infant’s voice as it is. In such a severe situation, how can infants find the correspondence between

their voices and the caregivers’ ?

Here, we propose a computational model to solve this problem focusing on the correspondence of

their vowels under the following assumptions.

1. The learner’s and the caregiver’s articulation regions are different as Fig. 1 illustrates in the sound

feature space. Therefore, the caregiver cannot imitate the learner’s vowels as they are.

2. The learner can extract the first and second formants, which are well known sound features to

discriminate vowels.

3. There are Mv kinds of vowels in the caregivers’ language system (for example, Mv=5 in Japanese,

i.e., /a/, /i/, /u/, /e/, and /o/). On the other hand, the learner has mv(> Mv) primitives to

utter vowels, but does not know that the caregiver has Mv vowels.
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Figure 1: The relationship between the caregiver’s vowels and the learner’s primitives

4. The caregiver responds to the learner’s utterance with an imitative mode (20%) and a non-imitative

mode (80%) according to Louis et al.’s analysis [14].

5. In every interaction, the learner initiates to utter and the caregiver certainly responds to the

learner’s utterance by voice. The learner selects two vowel primitives from its mv ones (ex. /a/

and /u/) and produce sounds of sequence of them (ex. /au/). Such a form of sound is considered

as one of the simplest approximations of continuous utterance in this study.

6. The caregiver has a criterion to decide which vowel among the mv ones of the learner is easier to

imitate with his/her corresponding vowel. If the learner utters an easier one for the caregiver to

imitate, the success rate of the imitation increases since the caregiver’s imitation sometimes fails

even under the imitative mode (20%) if the learner utters a harder one for the caregiver to imitate.

7. The caregiver’s utterance included words in addition to the target vowels to be imitated, whether

the imitation succeeded or not. For example, when the learner utters ”/au/” in the the caregiver’s

imitating mode, the caregiver could say ”Did you say /au/?” if he/she succeeds in imitating them,

while ”You love /eo/!” if he/she fails ,or in the non-imitative mode, the caregiver could say ”Good

boy!”, ”What do you want?”, and so on.

The above assumptions 6 and 7 are illustrated in Fig. 2 where the interaction is classified into three

cases: one is a non-imitative mode (80%) while the second and the third ones belong to an imitative mode

whose probability pI is 20%. The imitative mode is divided into the successful imitative (the second)

mode and non-successful imitative (the third) mode according to whether the caregiver succeeds to

imitate or not. The success rate of imitation is parameterized by pS
i since sometimes the caregiver fails

to imitate due to the bad utterance selection by the learner. The task of the learner is to find ways of

articulating Mv sounds that the caregiver regards as his/her corresponding ones by rejecting its own

mv −Mv vowels. At the beginning, the leaner has no idea which among mv vowels corresponds to ones
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Figure 2: A flow of probabilistic choice of the caregiver’s response

of the caregiver. That is, the mv vowels have equal likelihoods to correspond to one of the caregiver’s

vowels.

A key idea to accomplish the task is to introduce an AMB (auto-mirroring bias) which biases the

likelihoods based on the learner’s anticipation of being imitated by its caregiver. Ishihara et al. [13]

utilized an AMB on the caregiver’s side as an attractor to entrain the imitated utterances by the learner

towards the caregiver’s own vowels since he/she already knows the correspondence. On the other hand,

the main role of an AMB on the learner side is to find the correspondence between the learner’s vowels

and the caregiver’s ones since the learner does not know the correspondence nor how many vowels the

caregiver has.

Supposing that the number of vowels of the learner mv is larger than that of the caregiver Mv, that

the caregiver succeeds to imitate if the learner utters the vowels easier for the caregiver to imitate, and

that this helps to obtain more correct mappings, the learning will proceed as follows.

1. Distribute mv models of distributions of the caregiver’s sound around the caregiver’s articulation

region randomly, each of which corresponds to one of the learner’s primitive and is used to judge

its likelihood whether it hears sounds corresponding to the primitive. Each model is parametrized

by the position and the variance of its distribution.

2. Update each models parameters based on relative likelihoods given sound features of the caregiver’s

response in every interaction. → The AMB puts more weights on the model corresponding to its

own utterances supposing to have been imitated and less on the rest.

3. Utter the selected vowels based on the learner’s belief how often they are imitated in the past. On

the caregiver’s side, he/she more often imitates the learner’s vowels if they are easier to imitate.

→ The selection mechanism biased by the AMB works as a learning accelerator.

4. Go back to 2 until the learning converges.
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Finally, we expect only Mv models could come to show high likelihoods when hearing the caregiver’s

utterances while the other mv − Mv ones remain at low values. The details of the learning mechanism

and the experimental results are given in the following sections.

3 Learning mechanism

Fig. 3 shows an overview of the learning mechanism. It consists of classifiers of the heard sound. The

number of them is equal to the number of articulation primitives of the learner, that is mv. Each of

these classifiers should learn where (position) and how accurately (variance) the corresponding vowel is

located in the caregiver’s articulation region. Hereafter, we call these classifiers imitation detectors.

Since the caregiver does not always imitate the learner’s voice, the learner should notice being

imitated by herself. In this section, we propose a self-organizing method of the learning imitation

detector not only based on calculating a likelihood of each classifier but also based on biasing itself by

what we call the auto-mirroring bias (AMB in Fig. 3). We denote the sound feature of a certain time

window ∆T , consisting of the first and second formants by f . The number of the primitives or classifiers

is set to mv. The sound produced by the i-th primitive is denoted by /vi/, (i = 1, 2, · · · ,mv).

Figure 3: An overview of the learning mechanism
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3.1 An imitation detector

We utilize a two dimensional Gaussian function in the space of the first and the second formants as a

classifier that models a distribution of the careigver’s sound observed when the caregiver imitates specific

vowel primitives of the learner. The Gaussian function for /vi/ is denoted by gi, (i = 1, 2, · · · ,mv) whose

parameters are µi and Si, representing its center and the covariance matrix. Since gi would be used for

detecting the sound feature when the caregiver imitates the i-th primitive of the learner, we call gi an

imitation detector for the i-th primitive.

The sound analysis is first applied to the caregivers’ utterance to obtain sound features within each

moving time window ∆T . The learner obtains a sequence of the sound features in every interaction.

We denote the k-th sound feature in the n-th interaction by fk(n) (see Fig. 4).

Figure 4: The k-th sound feature fk(n) in the n-th interaction

To update the parameters of gi, the learner has to extract the segments of the sound in the timing

when the caregiver imitates the learner’s utterance with the i-th primitive. For µi(n), it is updated

by calculating a weighting average of the sound features f̄
i(n) according to li(fk(n)) (described in the

next section), that is the likelihood of gi given fk(n), as follows

f̄
i(n) =

∑
k li(fk(n))fk(n)∑

k li(fk(n))
. (1)

At the n-th step, the parameter of its center µi(n) is then updated by moving average among the

history of f̄
i(n) such as

µi(n) = (1 − η)µi(n − 1) + ηf̄
i(n) , (2)

where η is a forgetting factor and set to 0.99 in this study. At the same step, the variance Si(n) is

updated as follows:

S̄
i(n) =

∑
k li(fk(n))(µi(n) − fk(n))(µi(n) − fk(n))T∑

k li(fk(n))
, and (3)

Si(n) = (1 − η)Si(n − 1) + ηS̄
i(n) . (4)
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3.2 Imitative likelihood li

The imitative likelihood of the i-th imitation detector given fk(n) is calculated as the relative value of

likelihoods of all other imitation detectors as follows:

li(fk(n)) =
gi(fk(n)) + ϵ(n)∑mv

j=1{gj(fk(n)) + ϵ(n)}
, (5)

where ϵ(n) is a positive small value for the stability of calculation and gi(fk(n)) is the absolute likelihood

of the i-th detector that is calculated by using a Gaussian function with the estimated parameters µi(n),

and Si(n), as follows:

gi(fk(n)) =
1√

2π|Si(n)|
exp{− (fk(n) − µi(n))T Si(n)−1(fk(n) − µi(n))

2
} . (6)

To stabilize the calculation in the beginning of learning, the parameter ϵ(n) is added to both the

numerator and the denominator in (5). Along with the learning progress, ϵ(n) is scheduled to gradually

decrease by the following equation:

ϵ(n) = ϵ0 +
α

1 + exp{β · (n − γ)}
, (7)

where α, β, γ, and ϵ0 are parameters to control ϵ(n) and set to 0.999, 0.005, 2000, and 0.001.

3.3 The auto-mirroring bias (AMB)

We suppose the effect of the AMB is not only to attract to the learner’s own perception as assumed

by Ishihara et al. [13], but also to bias towards a believe in the caregiver’s imitation: to learn the

correspondence between the own vocalized vowel and the caregiver’s response. Here, we examine the

effect of the AMB to believe and learn the caregiver’s response as the imitation corresponding to the

robot’s own vocalized vowel whether the caregiver imitates or not.

We introduce another variable ai(n) into the calculation of the imitative likelihood to consider the

AMB, which varies according to whether the i-th primitive is used in the n-th interaction such as

ai(n) = max{āi(u1(n)), āi(u2(n))} , (8)

where u1(n) and u2(n) are formants that are produced by the learner in the first and second vowel

selected in the n-th interaction while āi(u) is the indicator of the AMB for the i-th primitive when it

produces u. It is calculated as follows:

āi(u) = exp{−∥u − u/vi/∥2

2σ2
} , (9)

where u/vi/ is the target formant that the learner should hear when it vocalizes the i-th primitive while

σ(=50) is a parameter to control the sensitivity of the AMB.

The equation to calculate the imitative likelihood is replaced as follows:
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l̃i(fk(n)) =
ai(n)gi(fk(n)) + ϵ(n)∑mv

j=1{aj(n)gj(fk(n)) + ϵ(n)}
, (10)

where l̃i is the modified imitative likelihood including the AMB. Updating parameters in (1) and (3) is

proceeded with l̃i instead of li.

3.4 The choice of the robot’s primitive

In every interaction, the robot chooses two primitives to utter. The choice is done based on to what

extent it expects the caregiver to imitate each primitive. The degree of such an expectation of the i-th

primitive /vi/ is denoted by ei.

3.4.1 Degree of expectation ei

The degree of expectation for /vi/ is calculated from the history of likelihood li of the i-th primitive. It

is considered that li(fk(n)) becomes biggest at the imitative sound among all segments in the caregivers’

utterance in the n-th interaction, i.e. ēi(n) in (11) is considered to roughly indicate whether the sound

produced by the i-th primitive is imitated by the caregiver in the n-th interaction. The degree of

expectation denoted by ei is defined as the average value of the ēi(n) among the history of interaction

as follows:

ēi(n) = max
k

li(fk(n)) , and (11)

ei(n) =
n − 1

n
ei(n − 1) +

1
n

ēi(n) . (12)

3.4.2 Selection probability qi(n)

We define selection probability qi(n) to refer to the probability of the i-th primitive to be selected to

produce the learner’s utterance in the n-th interaction. qi(n) is calculated by the following equation

qi(n) =
e2
i∑mv

j=1 e2
j

. (13)

4 Experiments

We conducted computer simulations of a semi-realistic human-robot interaction using real sound waves

recorded from a person. We simulated a mother-infant interaction as observed in the literature [14],

which involves the difficulty of finding correspondence of vowels between them. It was shown that

the simulated learner could find corresponding vowel primitives to the ones of the caregiver from less

frequently imitative interaction with the caregiver by considering the infant-side aspect of the AMB.
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4.1 Setup

It was supposed that, in every interaction, a learner first selects two primitives from mv primitives of

articulation and a caregiver agent then responds to the learner’s utterance according to the parameters

of pI and pS
i as described in section 2. Ten runs of computer simulations of 10,000 times interaction were

conducted to analyze tendencies of the found correspondence as the parameters of Gaussian functions

gi(µi(n), Si(n)), (i = 1, 2, · · · ,mv).

The number of articulation primitives of the learner (i.e., mv) is 100. We show the first and the

second formants of the learner’s clearest vowels u/vi/(i = 1, · · · , 5), each of which corresponds to /a/,

/i/, /u/, /e/, and /o/, in Table 1. The other primitives were assumed to be distributed around the

clearest vowels. They are assumed to be categorized into five categories each of which corresponded

to one of the Japanese vowels. Since these primitives in one category are assumed to have different

clarity for the caregiver, different values were assigned to each pS
i . The parameter pS

i is set to be higher

according to how closer a sound the i-th primitive could generate to the clearest ones in the same

category. The 100 primitives are assumed to be distributed so that each category has twenty levels of

clearity sounds as shown in Table 2. Here, the first five primitives /v1/, · · · , /v5/ were considered to be

the clearest corresponding vowels /a/, /i/, /u/, /e/, and /o/ for the caregiver.

Table 1: The first and the second formants of the learner’s clearest vowels (Mel scales)

1st formant 2nd formant

u/v1/ 1243.5 1609.7

u/v2/ 770.3 2146.8

u/v3/ 812.1 1538.4

u/v4/ 981.6 1981.6

u/v5/ 941.8 1463.0

Table 2: Vowel category and pS
i assigned to each articulation primitive /vi/, (i = 1, 2, · · · , 15)

/a/ /i/ /u/ /e/ /o/

pS
i = 1.0 /v1/ /v2/ /v3/ /v4/ /v5/

pS
i = 0.95 /v6/ /v7/ /v8/ /v9/ /v10/

pS
i = 0.9 /v11/ /v12/ /v13/ /v14/ /v15/

...
...

...
...

...
...

pS
i = 0.05 /v96/ /v97/ /v98/ /v99/ /v100/

A person’s utterances were recorded and used as the voice of the caregiver in the simulation. The

sampling frequency was 11025[Hz] and the sampling window for analyzing acoustic features was 256
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samples of the segmented caregiver’s responses. Moreover, data with lower levels of sound power was

cut as noise. The first and second formants were analyzed for each sampling window in the mel scales.

Conversion of the sound feature in the Hz scale sh into the mel scales sm was performed in the following

equation

sm =
1000

log10 2
log10(

sh

1000
+ 1) . (14)

In the imitative response mode, the caregiver replied in either of the following five types of utter-

ances: ”/XiXj/”, ”/XiXj/ KANA?” (”Did you say /XiXj/?”), ”/XiXj/ NOKOTO?” (”You mean

/XiXj/?”), ”KOREHA /XiXj/ DESU” (”This is /XiXj/.”), ”SOUSOU, /XiXj/!” (”Yes, /XiXj/”).

Here, /XiXj/ (i, j = 1, · · · , 5) indicates a sequence of two vowels selected from the five Japanese ones.

Therefore, 125 combinations are possible, which are combinations of different sentence types and uttered

vowels. For the non-imitative response mode, the other 125 utterances were recorded. We asked the per-

son to utter the following sentences 25 times: ”DOUSITANO?” (”What’s wrong?”), ”ONAKASUITA?”

(”Are you hungry?”), ”NANINANI?” (”What did you say?”), ”MOUIKKAIITTE” (”Please say it one

more time.”), and ”YOKUDEKITANE” (”Good boy!.”). After the learning process has successfully

proceeded, the learner is expected to be able to exclude such parts of non-imitative sentences according

to the value of l̃i.

We show the average values of the first and the second formants of each vowel which appeared in the

total 250 utterances of the caregiver in Fig. 5 (a). Histograms of formants in the imitative utterance

of the learner including clearest vowels, that is /v1/ (Fig. 5 (b)), /v2/ (Fig. 5 (c)), /v3/ (Fig. 5 (d)),

/v4/ (Fig. 5 (e)), /v5/ (Fig. 5 (f)), which correspond to /a/, /i/, /u/, /e/, and /o/, respectively are

shown in Fig. 5. In these figures, the horizontal and vertical axes indicate the first and second formants.

The number of formants in the caregiver’s utterances is represented by color intensity from blue (less

frequent) to red (more frequent). Fig. 5 (g) shows a similar histogram in the non-imitative mode.

As shown in figures from Fig. 5 (a) to (f), the most frequently vocalized sounds in the caregiver’s

imitative response mode are the corresponding vowels to the learner’s. Therefore, the learner would have

many chances to learn a correct vowel mapping, when the caregiver succeeded in imitating the leaner’s

utterances. On the other hand, as shown in Fig. 5 (g), the caregiver’s responses in the non-imitative

mode are widely distributed near the vowel /i/ or /u/.

Therefore, the robot frequently learns the relationship between its own vowels and the caregiver’s

vowel /i/ or /u/, and the center of Gaussian function µi(n) also moves to the area near the vowel /i/

and /u/. From Fig. 5, it is inferred that the robot cannot learn the correct relationship between own

vowels and the caregiver’s vowels if the caregiver does not imitate at some frequency. Therefore, the

learner would be incorrectly biased to associate all its vowels to the caregiver’s vowels of /i/ and /u/

while its vowels to be associated with /i/ or /u/ would be also biased to others.

We ran learning simulations with five different parameters of pI , namely 0.01, 0.05, 0.1, 0.2, 0.5, and

1.0. The initial values of the parameter µi(n) of the i-th imitation detector was selected at random so
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Figure 5: The caregiver’s vowels and the tendency of the caregiver’s responses

that the Gaussian center indicated by them was distributed inside of 200 mel across a circle centered at

the centroid of the caregiver’s vowels. The initial values of the parameter Si(n) were calculated from

the segments in the possible 250 patterns of the caregiver’s utterance.

4.2 Results

Fig. 6 shows the average profiles of the learning progress among ten trials: how the imitation detectors for

the clearest primitive approach the desired values (blue curve) and how the clearest primitives become

to be selected more frequently through learning (red curve). The former was evaluated as average

discrepancy between the estimated centers of the imitation detectors and the corresponding caregiver’s

vowels. We can see that it converged to about 50 [mels], which is much less than the discrepancy between

the caregiver’s vowels so that it can distinguish them by the estimated detectors. On the other hand,

the latter was evaluated by summing qi for the clearest primitive of each category. We can see that

the averaged selection probability of clearer primitives became higher than less clear ones. The drastic

decrease of the estimation error and increase of the selection probability for the clearest primitives

appears around the 3,000-th step. It is considered that such a synchrony is caused by the change in ϵ(n)

that corresponds to the change of the learner’s confidence in the self-evaluation.

The details of the learning progress can be seen in an example transition of the learning progress

where pI = 0.2 (Fig. 7): (a) at the beginning, (b) at the 2,000-th interaction, (c) at the 3,000-th
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Figure 6: The transitions of sum of selection probability qi of the clearest primitives and the average

discrepancy between the estimation of the corresponding vowels to the clearest primitive of each category

under the condition with the imitation probability pI = 0.2

interaction, (d) at the 4,000-th interaction, and (e) at the 10,000-th interaction. In these figures,

transitions of the estimated centers of the Gaussian functions in the imitation detectors are shown as

brown dots while trajectories of the clearest primitives of each vowel category are shown with solid lines

of different colors, that is /a/ (red), /i/ (green), /u/ (blue), /e/ (purple), and /o/ (sky blue). As shown

in Figs. 7, starting from the initial placements, the estimated centers of the clearest primitives first

converge to the center and then approach the corresponding caregiver’s vowels, which are indicated by

character the ”+”. The reason of the initial convergence is that the value of ϵ(n) in equation (10) is

relatively larger than gi(fk(n)) at the beginning of learning. This makes l̃i(fk(n)), which is used as

weighting factor of the data constant independent of inputs and therefore the estimated averages for all

primitives are converged to the some center of all inputs.

Next, we tested whether the learner became able to imitate the caregiver’s vowels. We input the

caregiver’s vowels to the imitation detectors and let the learner select one primitive i∗ according to the

likelihood using equation (5):

i∗ = arg max
i

li(f/k/) , (15)

where /k/ is one of the caregiver’s vowels, that is /a/, /i/, /u/, /e/, and /o/. The values of f/k/ are

shown in Fig. 5 (a).

The success rate of the learner’s imitation was then evaluated according to the probability that the

caregiver would succeed in imitating it again. It can be calculated by averaging pS
i of the selected
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Figure 7: The trajectory of the center of Gaussian function µ1, · · · , µ5 and values of µ1, · · · , µ100 under

the condition with the imitation probability pI = 0.2

primitive which enables the caregiver to imitate it again. Fig. 8 shows the transition of the success

rate of the learner’s imitation under pI = 0.2. We can see that the learner became almost capable of

imitating until the 4,000-th step in very high probability, namely about 0.9.

We calculated the averaged value of the selection probabilities of vowel primitives after 10,000 learn-

ing steps among ten trials under pI = 0.2. Fig. 9 shows the summed values of qi(10, 000) among

primitives with the same pS (vertical axis) in terms of pS (horizontal one). It is, therefore, considered

that the proposed method works well, making the learner acquire vowels easier for the caregiver to

imitate in the case of the imitation probability pI = 0.2.

Fig. 10 shows average performances at the 10,000-th step among ten trials under different pI :

discrepancy between the estimated centers of the imitation detectors and the corresponding caregiver’s

vowels (red curve) and the success rate of learner’s imitation among ten trials (blue curve) while error

bars indicate their standard deviations. We can see that the performances are well maintained even

if pI decreases to 0.1. This possibly shows the tolerance of the proposed method for variances in the

characteristic of the caregiver whether he or she is more or less careful (imitative) of the learner.

5 Discussion concluding remarks

We have proposed a learning method that may explain the mechanism how infants can obtain their own

vowels, exposed by their caregivers’ mother tongues with less frequent (only 20%) imitative caregivers
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as shown by Louis et al. [14]. As Kuhl et al. [15] have shown, the 6-month-old infants are capable

to discern differences between the phonetic units of many languages, including languages they have

never heard, but gradually their capabilities are tuned to their native languages. In order to model this

process from a viewpoint of cognitive developmental robotics, we prepared many more vowel primitives

on the learner side, and distributed their models around the caregiver’s articulation region supposing

that some among these models come to correspond to the caregiver’s vowels while others do not during

the learning process to simulate the infants developmental process. Although the proposed model seems

to qualitatively explain the latter process of tuning in the suggestion of Kuhl et al. [15], we could

improve the model to predict to what extent infants keep being capable to discern differences through

development.

In addition, as shown in Fig. 8 and Fig. 9, the learner’s utterances gradually shift to more vowel-like

sounds and much clearer vowels (average pS
i = 0.9) are uttered in the latter term of interaction. Such

a change in the learner’s utterances seems to resemble a certain aspect of infant development that has

been reported in the literature [16] [17] where infant’s utterances gradually shift from overlapped vowel

clusters to separated (clearer) ones. In our model, the learner was able to select the utterances of the

much clearer vowels which are actually easier for the caregiver to imitate because we assume that the

learner selects the primitives according to degree of expectation ei. It is uncertain whether or not infants

really anticipate caregivers’ imitations and reflect them in their utterances. However, some researches

of developmental psychology report infants get interested in the caregiver’s imitation and contingent

response and prompt to them [18, 19, 20]. Therefore, we consider that further examinations on degree of

expectation ei become possible along with the advances in developmental psychology about the infant’s

behavior to the caregiver’s imitation. Such investigations collaborated with developmental psychology

are the important future issues to validate the plausibility of the proposed model.

Next, as shown in equation (8) and (9), σ is one of the parameters, which controls the anticipation of

the caregiver’s imitation. So, we analyze the relationship between the value of σ and the learning result.

Fig. 11 shows the transitions of the discrepancy between the estimation centers of the Gaussian functions

for the learner’s clearest vowels and the formants of the caregiver’s vowels under the condition with the

imitation probability pI = 0.2 and different σ. The red curve shows normal anticipation (σ = 50, the

same result as the blue curve in Fig. 6), the blue curve shows weak anticipation (σ = 200), the green

curve shows very weak anticipation (σ = 500), the pink curve shows strong anticipation (σ = 1). As

shown in Fig. 11, the correspondence learning of the vowels does not go well in the earlier stage of

learning when the anticipation is weak, and it also does not go well in the latter stage of learning when

the anticipation is strong. This result indicates that the anticipation accelerates the correspondence

learning, but too strong anticipation become to interfere it along with the learning progress. The curves

and error bars in Fig. 12 show the average and the standard deviation of discrepancy of the clearest

primitive in each category from its corresponding vowel at the end of the learning process with different

parameters of pI and σ. As shown in Fig. 12, level of the discrepancy with strong anticipation (pink

curve) becomes less than those with weak anticipation (blue and green curves) and approaches one with
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normal anticipation (red curve) as P I is increased. These results indicate an important future issue of

how the degree of anticipation can be adapted to the learning progress.
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The assumptions described in 2 seem very weak, maybe use: quite reasonable since they reflect the

findings in developmental psychology. However, one big question is that we fixed 100 primitives of the

learner’s vowels, that means the capability of the articulation does not change while the change of the

perception is modeled. That is, we ignore the emergence of more vowel-like utterances owing to the

development of the vocal organ and change of utterable sounds for the infant in our study. This might

be partially solved by representing the utterance by the learner that it expects to be imitated as not a

discrete vector but a distribution on the formant space. Such distributions would be selected according

to a degree of expectation qi and utilized to explore better utterances. As a result, we can interpolate

the utterance supposed to have been imitated. The extrapolation of the utterances can be involved in

the process if we suppose that the learner’s articulation skill develops. However, we need to know how

this process happens in real infants.

Another issue is that we have not considered the effect of the AMB on the caregiver’s side in

the mapping process. In the Ishihara et al. [13] study, the caregiver’s AMB and sensori-motor magnet

affected the learning convergence of the infant robot. We may expect further acceleration of the learning,

but there might be negative effects on the process. This and the development of the learner’s articulation

skill mentioned above are future work. Therefore, tuning of the hyper-parameters of learning such as ϵ

in our model according to the history of the interaction would be necessary.

Final goal of our study is to realize interactions between a caregiver and an infant robot to verify

the proposed method. The authors’ group developed a research platform called CB2 [21] that has
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different sensor modalities and body actions, however the articulation skill is insufficient. We need

another research platform with a capability of richer articulation skills and realistic appearance so that

the caregiver will feel like having a real interaction.
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