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Abstract—Motor synergies describe joint activations of muscles
or motors during sensorimotor tasks. Hard-wired synergies
have been discusses to facilitate and ease motor control at the
levels of mechanical actuation of biological systems and spinal
motor control. Long-lasting debates additionally issue adaptive
synergies as mechanism for learning in sensorimotor domains,
such as a “freezing and freeing” of degrees of freedom in order to
reduce the dimension of sensorimotor tasks. This paper discusses
the terms of synergies and DOF freezing in the light of recent
work on Goal Babbling. We discuss conceptual, experimental,
and theoretic evidence showing that synergies and DOF freezing
must be distally observable phenomena during goal babbling.
We therefore argue that synergies might be viewed as an effect
rather than the mechanism of efficient sensorimotor learning.

I. INTRODUCTION

Motor synergies describe phenomena in which “multiple
muscles are bound together such that a central control signal
jointly and proportionally activates all muscles in the syn-
ergy.” [1] “According to the strong version of this concept,
these synergies are invariant, hard-wired patterns of activation
across muscles.” [2] Motor synergies are widely believed to
simplify motor control on several levels. Even at physical
actuation levels degrees of freedom are often bound together,
for instance in the human hand which is substantially un-
deractuated. Synergies are also found in vertebrates’ spinal
cords, such as reported for frogs [3] where fixed wirings have
been reported that couple subsequent muscle activations. These
hard-wired patterns of underactuation and spinal organization
are matters of physical constraints that are hypothesized to
simplify cortical and cerebellar motor control.

Synergies are not only reported on such physical levels,
but also as observations in behavioral experiments. Synergies
are often distally observed during (not only [2]) humans’
skilled execution of sensorimotor tasks. For instance when
humans manipulate or just hold objects, strong statistical
regularities are found both with respect to muscular forces
as well as skeletal posture [4]. Likewise stereotypical muscle
activations are found in the arm when performing fast reaching
movements [5]. In these scenarios synergies are measured in
terms of low-dimensional linear dependencies among muscle
activations. These can be found in terms of linear regression
methods, or more generally in terms of matrix factorization
techniques [6] such as principal component analysis. If, e.g.
few principle components with high variance are found (com-
pared to many other dimensions with low variance), then these
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Fig. 1. The concept of goal babbling defines exploratory learning by means
of ongoing, goal-directed estimates of how to achieve goals. Since new actions
are estimated based on the learned structure of previously explored actions,
they must be statistically similar to these previous actions. From a distal
perspective this structure can be diagnosed as existence of motor synergies.

components are considered as motor synergies. In contrast
to the level of physical constraints it is not generally clear
whether such observed synergies are an internal mechanism
to structure sensorimotor control, or rather an effect of other
mechanisms that reflects (optimal) mastery [7] of a skill.

The question of synergies being mechanism or effect gets
even more delicate when investigating the initial learning of
sensorimotor skills, instead of their highly skilled execution.
Learning sensorimotor skills from scratch often concerns
the coordination of many degrees of freedom. Such high-
dimensional spaces do not permit an exhaustive exploration
such that mechanisms to reduce the demand for exploration
are necessary. Already Bernstein [8] noticed this problem, and
suggested a staged learning process along which infants boot-
strap their initial repertoire of motor skills: they would firstly
“freeze” certain combinations of degrees of freedom, i.e. using
motor synergies, in order to simplify the learning problem
and then later on release (or “free”) them to achieve versatile
performance. In fact, such “freezing” phenomena have been
empirically observed in some learning tasks [9], [10], [11]. The
idea to alleviate the exploration problem in high dimensions
by means of constraining synergies has been picked up in
robotics studies [12]. Yet, the choice of these synergies is
delicate. Finding the right motor synergy to solve a difficult
coordination problem does not seem to be simpler than solving
the task right away. Rather, unsuited choices of constraints can



(a) Initial state in a home posture (b) Orientation into least-squares direction (“freezing”)

(c) Expansion along least squares direction (d) Non-linear decoupling (“freeing”) and tuning

Fig. 2. An inverse model of a simple planar arm is learned with goal babbling. The arm as two degrees of freedom. The 2D “action space” of possible
postures is shown on the left-hand side of each picture. The task is to control only the effector’s height, whose values are color-coded (red: high; blue: low).
The images show successive epochs of the learning process. Examples (green points) are suggested by trying to reach with the inverse model. This sampling
around the inverse model creates a quasi-one-dimensional data distribution, which can be interpreted from a distal perspective as motor synergy.

easily impair the movement ability. Consequently, this choice
demanded substantial manual design in the present robotics
studies [12], [13]. So far no study could demonstrate how to
choose useful synergies fully autonomously for a previously
unknown sensorimotor problem that is subject to learning.

II. MOTOR SYNERGIES DURING GOAL BABBLING

The central argument to use motor synergies as constraint
on learning was always that too many degrees of freedom can
not be effectively explored. Hence, a motor learning problem
should be boiled down to low dimensions so that exhaustive
random exploration is feasible. This argument needs to be
thoroughly rethought with the advent of highly efficient goal-
directed exploration schemes like goal babbling [14]. Such
schemes have shown to permit robot learning with human-
competitive speed [15] even in very high dimensions. Plus,
they give a direct account for how humans’ learning might
deal with many degrees of freedom by showing the usefulness
of early goal-directed movement attempts that have been
observed already in neonates [16].

At the most general level the concept of goal babbling is
defined as follows:

Definition [17]: Goal babbling is the bootstrapping
of a coordination skill by repetitively trying to
accomplish multiple goals related to that skill.

This definition does not refer to a particular algorithm or
implementation, but to a general approach of “learning by
doing”. When an agent explores actions or motor commands
by trying to accomplish goals, it has to make estimates of how

to reach them. This very process of making an educated guess
based on previously seen and learned experience facilitates
the occurrence of distally observable motor synergies: suppose
the agent has just explored very few actions (see Fig. 1(a)).
It is gradually learning a motor controller in order to reach
for them. If the agent tries to reach for a goal it has not
experienced yet, the learning controller has to extrapolate.
Since any learning is based on statistical regularities, the ex-
trapolated motor command will display many similarities with
previous motor commands (see Fig. 1(b)). Motor commands
that differ drastically from previous experience will barely be
chosen. For instance, if all gathered experience shows that two
joints move “together” (like the two joints on the right side of
Fig. 1(a) and (b)) it is unlikely that a learner generalizes this
data by moving both joints into opposite directions. Hence,
all motor commands share statistical properties like a general
co-activation of certain joints or muscles that, when observed
from a distal perspective, are easily interpreted as motor
synergies.

The precise nature of these statistical regularities does of
course depend on the particular algorithmic implementation
of goal babbling. Several schemes have been proposed so far
[18], [19], [20], [21]. Here we focus on original work in [14],
which implements goal babbling for the learning of inverse
models. An inverse model itself can be seen as a nonlinear
motor synergy: it suggests actions in some potentially high-
dimensional action space for any possible goal which has most
often a lower dimension. Since low-dimensional goals are
projected into a high-dimensional space of motor commands,



these actions must lie on a low-dimensional manifold within
that space.

Very specific synergy-like phenomena can be observed
during the learning of such models with goal babbling. Fig. 2
shows an example [14] of a robot arm with only two degrees
of freedom. Only the height of the end-effector shall be
controlled, such that the task comprises redundancy. The left
side of each image shows the two-dimensional space of motor
commands, in which actions are explored by querying the in-
verse model (one-dimensional manifold with colored markers)
plus adding some exploratory noise. At any point in time,
the distribution of data-points (green dots) follows the inverse
model and constitutes an essentially one-dimensional structure.
This statistical structure could be interpreted as a single motor
synergy with significant variance of motor commands, plus an
orthogonal direction with only little variance. Both joints seem
to be coupled. In fact they are. Yet, the way they are coupled
is not a constraint imposed before learning starts (in order to
ease it) but a result of combining (i) the learning of an inverse
model with (ii) goal-directed exploration that already exploits
the statistical regularities obtained by learning.

A more detailed inspection of Fig. 2 shows that learning
expands into the direction of the steepest gradient from the
very beginning (b). A following phase of expansion (c) re-
mains within the same linear subspace inside the space of
motor commands, i.e. both joints seem to be linearly coupled.
Only in the end (d) this linear coupling is resolved and the
inverse model gets well-tuned to the coordination problem in
a non-linear manner. This behavior is very similar to reports
of freezing (strict coupling) and later on freeing of degrees
of freedom, but again is an effect rather than a mechanism
inherent to learning.

These observations are highly repeatable based on the
algorithm in [14], which collects several examples before a
learning step is made. This process rules out many stochastic
fluctuations that appear if online learning is applied [15].
In online scenarios the inverse model does not necessarily
expand into the unique least-squares direction, but also into
less optimal directions. However, the distribution of explored
actions is still spanned by means of an inverse model such
that a low-dimensional structure is explored inside the high-
dimensional space of motor commands. These motor com-
mands thus share statistical properties in a very similar way
as sketched previously at a conceptual level (compare Fig.
3 and 1). Even if these solutions are not optimal in the
very beginning, they have been shown to finally return into
a regime of well-tuned solutions [15], so that also cross-trial
comparisons display highly comparable statistics.

III. FIXED MOTOR SYNERGIES IN LINEAR DOMAINS

Goal babbling is most useful for robotics applications when
non-linear problems are considered. Linear domains, on the
other hand, are well suited for deeper theoretical investiga-
tions. In a linear domain we can consider the behavior of the
motor apparatus (or more generally: world) as a linear forward
function f(q) = M · q = x. This function turns actions or

Fig. 3. Online goal babbling on a planar robot arm with 50 degrees of
freedom. Motor commands chosen during exploration share common, though
initially suboptimal, properties. In this trial one joint in the middle of the arm
is heavily used in particular for goals close to the robot arm’s basis (left side).

motor commands q ∈ Rm into their lower-dimensional causal
outcomes x ∈ Rn (e.g. the resulting hand position). M ∈
Rn×m is a matrix of coefficients that expresses the degree
to which each dimension of motor commands influences each
dimension of outcomes. Solvable sensorimotor tasks generally
have dimensions n ≤ m. Often, m is substantially larger than
n, i.e. there are many more degrees of freedom than actual
task variables.

Learning is then formulated by means of a linear inverse
model g(x∗) =W · x∗ = q̂ that suggests actions q̂ to achieve
goals x∗ ∈ Rn. W ∈ Rm×n is a matrix of parameters
adaptable by learning. Goal babbling can be performed by
generating explorative actions with this inverse estimate, plus a
perturbation term ε. For the analysis it is assumed that actions
q
(t)
k are chosen for each goal (from some fixed set) and for

several perturbations in each timestep t, which mimics the
algorithm in [14]:

q
(t)
k =W (t)

genx
∗
k with W (t)

gen ∼Wt + ε .

The components of the perturbation ε ∈ Rm×n are chosen
i.i.d. with zero mean and variance σ2. Each of these actions
is performed, and its outcome x(t)k = f(q

(t)
k ) is observed. The

combined data set D of actions q and corresponding outcomes
x is then used for a supervised learning step by means of
gradient descent:

Wt+1 =Wt − η
∂EQ(W,D)

∂W
, (1)

where η is some learning rate and EQ is the supervised error
resulting from deviations g(x,W ) − q of the inverse model
with respect to the set of data.

This exploration strategy can now be investigated with
respect to the generated data distribution and its change over
time. Motor synergies are empirically investigated by means of
matrix factorization techniques such as PCA [6], which we can
directly apply to the linear case analysis of goal babbling. For a
PCA we need to consider the multidimensional correlations of



the observed motor commands. Assuming a fixed value of the
learning parameters W for the exploration strategy sketched
above, this correlation can be derived as [17]:

Q = E
[
q · qT

]
=WX∗WT + σ21m ∈ Rm×m ,

where X∗ ∈ Rn×n is the autocorrelation of goals x∗. By con-
struction, the left-hand part of this equation is positive semi-
definite with a maximum number of n positive Eigenvalues
λi > 0. In terms of a spectral composition (as used for PCA)
it can consequently be factorized into matrices V,D ∈ Rm×m

such that:

WX∗WT = V ·D·V −1, D = diag(λ1, ..., λn, 0, ..., 0︸ ︷︷ ︸
m−n times

) .

This allows to factorize the entire correlation matrix Q into

Q = V ·D·V −1 + σ21m = V ·
(
D + σ21m

)
· V −1 ,

with the same Eigenvectors in V , and Eigenvalues(
D + σ21m

)
= diag(λ1 + σ2, ..., λn + σ2, σ2, ..., σ2︸ ︷︷ ︸

m−n times

) .

Hence, the data distribution has m−n equally small principle
components and n larger principle components at any point
in time (see Fig. 4(a)). This describes exactly the statistical
structure that is used to empirically search for motor synergies
in biological motion.

This result holds instantaneously only for a fixed value of
the learning parameters W . If W changes as result of learning,
actions can be projected into different subspaces so that more
different significant principle components are observed over
a cumulative learning experiment. However, novel results in
[22] show that, although W changes, it remains within the
same subspace in relevant scenarios. The central tool to study
these subspaces during goal-directed exploration is to analyze
the column space of the parameter matrix W , which mainly
drives the exploration and constitutes the principle components
belonging to the largest Eigenvalues as discussed above. The
columns ~w(i) of W contain the action space directions in
which the inverse model projects different dimensions of a
goal x∗ in observation space:

g(x∗) =W · x∗ =

n∑
i=1

~w(i) · x∗(i) .

As a first scenario we can consider exploration without ex-
ploratory noise (σ2 = 0). In that case it can be shown that the
column space does never change:

Theorem 1: For σ2 = 0, goal-directed exploration remains
in the initial column space of W0, i.e. any Wt can be factorized
into W0 · Pt with Pt ∈ Rn×n. [22]
Such development of parameters W is illustrated in Fig. 4(b)
for a simple problem with n=1, m=2, M =(0.5, 0.5), and
two learning parameters W =(w1, w2)

T . The plot shows paths
of these parameters through the space w1/w2 during learning,
which are entirely concentric. Learning only re-scales existing
components. Learning can get stuck in the Nullspace (MW =

i'th of m Eigenvalues of action correlation Q
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(a) Amplitude of the actions’ principle components (referred to
as synergies) during goal babbling in a linear domain.

(b) Learning parameters for goal-directed exploration
without noise stay in the ever-same linear subspace.

(c) When noise is added, parameters still develop linearly
between zero and the fixpoint.

Fig. 4. Goal babbling for the learning of inverse models in linear domains:
Relevant cases describe a learning process that remains in a fixed linear
subspace. This subspace reflects the directions of motor commands in which
goals are projected, and results in distinct principal components.



0), or can converge to any possible solution of the coordination
problem, which is formally characterized by MW =1.

The situation is more complex for learning with exploratory
noise. It can be shown that this process always converges to the
unique least squares solution instead of any possible solution:

Theorem 2: For σ2 > 0, the unique fixpoint of the learning
equation 1 is the Moore-Penrose pseudoinverse: W =M# =
MT (MMT )−1. [17]
Fig. 4(c) shows that this can lead to severely non-linear paths
through the parameter space, and thus time-varying synergies.
Yet, when starting from an neutral parameter value W = 0
that does not impose any direction, it can be shown that the
column space remains fixed also for exploration with noise:

Theorem 3: For σ2 > 0 and W0 = 0, goal-directed
exploration remains in the column space of MT , i.e. any Wt

can be factorized into MT · Pt with Pt ∈ Rn×n. [22]
In Fig. 4(c) this is visible by the straight path between W =0
and W =M#=(1, 1)T . If the column space of the parameters
does not change, also the directions of high variance inside the
space of motor commands do not change. Even a cumulative
statistical analysis of an entire learning process must reveal a
spectrum of Eigenvalues as shown in Fig. 4(a). Most variability
of motor commands is explained by few variables, which is
commonly argued to indicate motor synergies. In the case
of goal babbling, this is not a mechanism, but an effect of
the conceptual organization of learning (see Fig. 1), and the
particular dynamics of its implementations.

IV. DISCUSSION

Hard-wired, evolutionary shaped motor synergies to sim-
plify motor control problems very certainly exist. When it
comes to learning entirely novel sensorimotor coordination
problems, however, the traditional believe that the central ner-
vous system creates novel, “soft” synergies to simplify learn-
ing must be challenged. Not only is it hard to autonomously
choose synergies that are actually useful for learning. Novel
conceptual and algorithmic developments that mimic infants’
early goal-directed movements also alleviate the demand to
reduce the dimension of the to-be-explored space. This paper
has demonstrated on different levels how the goal babbling
approach can nevertheless account for the apparent existence
of synergies in experiments on biological learning. Instead of
assuming synergies as a fixed mechanism, they can appear
on a behavioral level as a mere result of learning. During
goal babbling this structure is induced by goals, which can
be similarly observed during kinesthetic teaching [23], [24]
of skills, where an experienced teacher induces typically low-
dimensional patterns. Specific transitions like “free(z)ing” of
degrees of freedom are also observed in experiments on goal
babbling in non-linear domains. Similar effects have also been
observed in goal-directed exploration processes for reinforce-
ment learning [25], which indicates that such observations
might be a rather general effect of efficient learning schemes.
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motor synergies,” Human Kinetics, vol. 11, no. 3, pp. 276–308, 2007.

[2] S. A. Overduin, A. d`Avella, J. Roh, and E. Bizzi, “Modulation of muscle
synergy recruitment in primate grasping,” Journal of Neuroscience,
vol. 28, no. 4, pp. 880–892, 2008.

[3] P. Saltiel, K. Wyler-Duda, A. D`Avella, M. C. Tresch, and E. Bizzi,
“Muscle synergies encoded within the spinal cord: Evidence from focal
intraspinal nmda iontophoresis in the frog,” Journal of Neurophysiology,
vol. 85, no. 2, pp. 605–619, 2001.

[4] E. J. Weiss and M. Flanders, “Muscular and postural synergies of the
human hand,” Journal of Neurophysiology, vol. 92, no. 1, 2004.

[5] A. d`Avella, A. Portone, L. Fernandez, and F. Lacquaniti, “Control of
fast-reaching movements by muscle synergy combinations,” Journal of
Neuroscience, vol. 26, no. 30, pp. 7791–7810, 2006.

[6] M. C. Tresch, V. C. K. Cheung, and A. d`Avella, “Matrix factorization
algorithms for the identification of muscle synergies: Evaluation on
simulated and experimental data sets,” Journal of Neurophysiology,
vol. 95, no. 4, pp. 2199–2212, 2006.

[7] E. Todorov, “Optimality principles in sensorimotor control,” Nature
Neuroscience, vol. 7, no. 9, pp. 907–915, 2004.

[8] N. Bernstein, The Co-ordination and Regulation of Movements. Perg-
amon Press, 1967.

[9] N. E. Berthier, R. K. Clifton, D. D. McCall, and D. J. Robin, “Prox-
imodistal structure of early reaching in human infants,” Experimental
Brain Research, vol. 127, no. 3, pp. 259–269, 1999.

[10] K. Newell and R. van Emmerik, “The acquisition of coordination:
Preliminary analysis of learning to write,” Human Movement Science,
vol. 8, no. 1, pp. 17–32, 1989.

[11] B. Vereijken, R. E. A. van Emmerik, H. T. A. Whiting, and K. M.
Newell, “Free(z)ing degrees of freedom in skill acquisition,” Journal of
Motor Behavior, vol. 24, no. 1, pp. 133–142, 1992.

[12] L. Berthouze and M. Lungarella, “Motor skill acquisition under environ-
mental perturbations: On the necessity of alternate freezing and freeing
of degrees of freedom,” Adaptive Behavior, vol. 12, no. 1, 2004.

[13] H. Hauser, , G. Neumann, A. Ijspeert, and W. Maass, “Biologically
inspired kinematic synergies provide a new paradigm for balance control
of humanoid robots,” in IEEE-RAS/RSJ International Conference on
Humanoid Robots (Humanoids), 2007.

[14] M. Rolf, J. J. Steil, and M. Gienger, “Goal babbling permits direct
learning of inverse kinematics,” IEEE Trans. Autonomous Mental De-
velopment, vol. 2, no. 3, 2010.

[15] ——, “Online goal babbling for rapid bootstrapping of inverse models
in high dimensions,” in IEEE Int. Joint Conf. Development and Learning
and Epigenetic Robotics (ICDL-EpiRob), 2011.

[16] C. von Hofsten, “Eye-hand coordination in the newborn,” Developmental
Psychology, vol. 18, no. 3, pp. 450–461, 1982.

[17] M. Rolf, “Goal babbling for an efficient bootstrapping of inverse
models in high dimensions,” PhD Thesis, Bielefeld University, 2012.
[Online]. Available: http://pub.uni-bielefeld.de/publication/2551092

[18] A. Baranes and P.-Y. Oudeyer, “Active learning of inverse models
with intrinsically motivated goal exploration in robots,” Robotics and
Autonomous Systems, vol. 61, no. 1, pp. 49–73, 2013.

[19] L. Jamone, L. Natale, K. Hashimoto, G. Sandini, and A. Takanishi,
“Learning task space control through goal directed exploration,” in IEEE
Int. Conf. Robotics and Biomimetics (ROBIO), 2011.

[20] C. Hartmann, J. Boedecker, O. Obst, S. Ikemoto, and M. Asada, “Real-
time inverse dynamics learning for musculoskeletal robots based on echo
state gaussian process regression,” in RSS, 2012.

[21] P. O. Stalph and M. V. Butz, “Learning local linear jacobians for flexible
and adaptive robot arm control,” Genetic Programming and Evolvable
Machines, vol. 13, no. 2, pp. 137–157, 2012.

[22] M. Rolf and J. J. Steil, “Explorative learning of inverse models: a
theoretical perspective,” Neurocomputing, 2013, in Press.

[23] M. Hersch, F. Guenter, S. Calinon, and A. Billard, “Dynamical system
modulation for robot learning via kinesthetic demonstrations,” IEEE
Trans. Robotics, vol. 24, no. 6, pp. 1463–1467, 2008.

[24] A. Lemme, A. Freire, G. Barreto, and J. Steil, “Kinesthetic teaching
of visuomotor coordination for pointing by the humanoid robot icub,”
Neurocomputing, vol. 112, pp. 179–188, 2013.

[25] F. Stulp and P.-Y. Oudeyer, “Emergent proximo-distal maturation
through adaptive exploration,” in IEEE Int. Joint Conf. Development
and Learning and Epigenetic Robotics (ICDL-EpiRob), 2011.


