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Abstract

We discuss the difficulty to learn control skills in high-dimensional domains that
can not be exhaustively explored. We show how infant-development can serve as
a role-model for highly efficient exploration: infants neither explore exhaustively,
nor do they learn very versatile skills right in the beginning. Rather, they attempt
goal-directed exploration to achieve feedforward control as a first step without re-
quiring full knowledge of the world. This article reviews recent efforts to mimick
such pathways by means of “goal babbling”, which have led to a series of algo-
rithms that allow for a likewise efficient learning. We show that it permits to learn
inverse models from examples even in the presence of non-convex solution sets
by utilizing a reward-weighted regression scheme, and that a human-competitive
learning speed can be achieved if online learning is applied “in the loop”. Results
are verified on the “Bionic Handling Assistant”, a novel bionic robot that instan-
tiates a wide spread of problems like high dimensions, non-stationary behavior,
highly constrained actuators, sensory noise, and very slow response-behavior.

1 Learning Internal Models for Motor Control

New generations of bionic robots combine mechanical flexibility, elastic material, and lightweight
actuation like pneumatics. Such robots are often inspired by biological actuators like octopus arms
(1], elephant trunks [2] (see figure[Ta)), or human biomechanics [3], and provide enormous potential
for the physical interaction between the robot and the world, and in particular between robots and
humans. The downside of their biologically inspired design is that analytic models for their control
are hardly available and difficult to design. This qualifies learning as an essential tool for their suc-
cessful application. Yet, these robots not only challenge analytic control, but also motor learning.
They typically comprise many degrees of freedom that can not be exhaustively explored, delayed
feedback due to slow pneumatic actuation, and often non-stationary system behavior. We therefore
argue for a new paradigm of motor learning that leaves exhaustive exploration, which cannot be
achieved for problems of such scale, behind. Rather, we focus on the achievable by drawing inspi-
ration from infant development in order to achieve reasonable feedforward-controlled coordination
skills that can be learned very efficiently when mimicking infants’ exploratory behavior.

As a general framework for motor learning, we can consider an agent that can execute motor com-
mands or actions g € Q, where Q is the action space. Each action causes an outcome (e.g. an effector
position) z € X in some observation space. The unique causal relation between both variables is
formally defined by some forward function f:

[:Q—=X, flg)=x (D

The control-, or coordination problem is then to invert this relation in any possible way: achieving
some desired outcome, or goal x* € X* out of a set X* C X requires to estimate an appropriate
action ¢ that results in the observation of z* (f(§) = x*).
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(a) The Bionic Handling Assistant (b) A forward function connects action and observation space

Figure 1: Left: Goal babbling allows to efficiently learn reaching with the Bionic Handling As-
sistant, which mimics an elephant trunk. Right: Action and observation space are connected by a
forward function f that maps actions to their causal outcome.

Learning Forward Models for Control Forward models f are predictors that can be used to
predict the outcome of some action g without actually performing it. Forward models can not solve
the coordination problem directly. Indirect mechanisms to use them for coordination are, however,
widely used, and define a process, such as inverse Jacobian control [4]], that dynamically searches

for an appropriate action g by using the known output and shape of f [5]. The learning of forward
models for sensorimotor coordination is a heavily investigated and widely used method in motor
learning literature, which allows to resemble control mechanisms typically used for the control of
robots with analytically known forward functions. The actual learning appears to be a standard
regression problem: (i) There is a ground truth functional relation f that is to be approximated by
the learned forward model f . (42) For any input q of the model, the correct output = (or in stochastic
domain the output distribution P(x|q)) can be queried by executing the forward function. Hence,
it is possible to collect a data set D = {(g;, x;) }; and learn the forward model, parameterized with
some adaptable parameters 6, by reducing the prediction error E¥ on the data set
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which approximates the expected error on the input distribution P(q). This view of the input distri-
bution exposes a central difference between forward model learning for control and standard regres-
sion problems: P(q) usually corresponds to some (at least empirically) known real world distribu-
tion that expresses how likely, and thus relevant, certain inputs are to the learner. For the learning
of a coordination skill, it is usually not known which actions are relevant to the solution of the coor-
dination problem. Which actions will be used in fact depends on the search mechanism that is used
on top of the forward model. Since the “true” distribution P(q) during control is unavailable, the
standard approach is to assume a uniform distribution, which corresponds to an exhaustive sampling
in the action space. Hence, sample actions are drawn in a random manner [6} [7], which is often
referred to as “motor babbling” [8]. The exhaustive sampling of actions can usually be done in
low-dimensional domains. Yet, it does not provide a feasible method when Q is high-dimensional.
Several approaches have been suggested to improve the feasibility of learning forward models for
coordination. One is concerned with the incorporation of prior knowledge. Ulbrich et al. reported

an approach that allows to make an exact match f = f for robots with only revolute joints. Their
approach allows to exactly pinpoint the number of examples needed to 3™ [9], which is still far
out of reach for high-dimensional motor systems. Another approach utilizes active learning, which
has been shown to reduce the absolute number of examples necessary to learn forward models [10].
While it can avoid the generation of entirely uninformative examples, it can not avoid the exhaustive
character of the exploration. Active learning still aims at the error reduction over the entire input
distribution P(q) of the learner [[11].



Learning Differential Inverse Models for Control Forward models are often used for establish-
ing a feedback controller that suggests actuator velocities ¢ for a desired effector movement &*,
based on the forward model’s inverse Jacobian. This relation can also be learned directly in a differ-
ential inverse model g, which maps ©* — ¢ [12]. The necessary actuator velocity depends on the
current state, e.g. the posture g, such that the inverse model needs to be learned with respect to that
dependency: ¢g(i&*, q) = ¢. Similarly, learning the inverse dynamics &* — § (or mapping on a motor
torque 7 directly) has been proposed [[13}[14]. Therefore, the current actuator velocity ¢ needs to be
considered as dependency, which gives an inverse model g(%*, q,¢) = ¢. If applicable, differential
inverse models permit highly versatile feedback control. However, it is not always applicable for
two reasons: Firstly, they critically rely on immediate feedback [[15], which is not always available.
Secondly, and more importantly, they inherit and worsen the scalability problems of forward model
learning. Fully learning such models requires full knowledge about the action space, and even all
combinations of actions ¢/G and there dependencies with with posture and velocity. Consequently,
the approaches for learning such models start with an random exploration [12} [13]], after which the
model can be refined while performing goal-directed actions.

Learning Direct Inverse Models for Control Direct inverse models g: x* — ¢ represent a differ-
ent class of control solutions. They directly suggest a motor command q for a goal x*, which can
be applied in a feedforward manner. While such feedforward control does not allow for such highly
versatile control as feedback models, it has two potential advantages for difficult learning problems.
Firstly, feedforward control is entirely insensitive to delayed, noisy, or missing feedback. Secondly,
direct inverse models do not require full knowledge about the sensorimotor space if the control prob-
lem has redundancy: only a single solution ¢ for any goal z* must be known, even if infinitely many
other solutions exist. Such models can be learned from very few examples if appropriate data exists
[L6]. Learning direct inverse models has been attempted in two different ways. Error-based methods
measure the current performance error EX = (z* — f(g(z*)))? between a goal z* and the outcome
f(g(x*)) of trying to reach it. They then attempt to adapt the inverse model by means of gradient
descent on EX. The complication of this approach is that computing the gradient of EX requires
prior knowledge, because differentiating £~ requires to know the Jacobian of f. This knowledge
alone could solve the control problem by means of feedback control. In feedback-error learning
[17] it is simply assumed that a mechanism to derive the gradient, and thus a feedback controller, is
already given. Learning with distal teacher [18] avoids a pre-existing controller, but requires to first
exhaustively learn a forward model f . Differently from error-based methods, example-based meth-
ods collect exploratory data (x, ¢), and attempt to adapt the inverse model by fitting it to the data, i.e.
minimizing E¢ = (¢—g(z))?. This method can be successful for simple and low-dimensional con-
trol problems by fitting randomly collected data. Predicting the success, however, is far from trivial
because the error functional E¥ used for learning is different from the actual performance metric
EX. For problems without redundancy it is easy to see that learning with E? is sound. We have
recently proven [[19] for linear control problems, even with redundancy, that the gradients of E© and
EX satisfy a non-negative relation, so that minimizing E< leads to minimizing £ . For non-linear
redundant problems, however, example based learning of inverse models is not generally applicable:
such problems possess non-convex sets of solutions ¢ for the same outcome x [18]]. Example-based
learning can then average them, which leads to invalid estimates. For differential models this can
typically be neglected: they are local by construction which implies approximately convex solution
sets. For direct inverse models, learning at least from arbitrary data is prohibitive due to this effect.

2 Lessons Learned from Babies

The standard models for the learning of control discussed in the last section demand either an ex-
haustive exploration or prior knowledge. Exhaustive exploration is prohibitive in high dimensions,
which gets even worse when the robot to be controlled is non-stationary. How is it possible to
learn and maintain a control skill in a non-stationary domain that can not even once be explored
exhaustively? This tough challenge is not unique to robots. To the opposite, humans face the same
problem to learn control a very high-dimensional, ever-changing motor system right after birth. It
turns out that infants follow a pathway very different from computational models that require an ex-
haustive exploration. It has long been argued in computational learning literature [20, 8] that infants’
early exploratory behavior is essentially random, and thus exhaustive. But this claim does not with-
stand evidence from three decades of developmental research, which has shown conclusive evidence
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Figure 2: The inverse estimate is initialized around zero in joint space. During goal babbling it
unfolds successively and reaches an accurate solution [27].

for very coordinated behavior even in newborns. Examples include orienting towards sounds [21]],
tracking of visual targets [22], and apparent reflexes that have been re-discovered as goal-directed
actions [23]]. In the case of reaching, it has been shown that newborns attempt goal-directed move-
ments already few days after birth [24]]. “Before infants master reaching, they spend hours and hours
trying to get the hand to an object in spite of the fact that they will fail, at least to begin with” [25].
From a machine learning point of view, these findings motivate to devise methods that intertwine ex-
ploration and learning in a goal-directed manner right away. Findings of early goal-directed actions
are complemented by studies investigating the structure of infants’ reaching attempts. When infants
perform the first successful reaching movements around the age of four months, these movements
are controlled entirely feedforward [26]. This strongly indicates the use of direct inverse model as
discussed in the last section, which selects one solution and applies it without corrections. It seems
that infants follow a very efficient pathway by focusing on the achievable: instead of trying (and
failing) to explore everything before starting goal-directed behavior, they gather few but appropriate
solutions and use them directly. Only later on these movements are gradually optimized and become
more adaptive as it is needed. While this pathway is very intuitive, it is orthogonal to the random
exploration approach which first attempts to gather full knowledge about the sensorimotor space.

3 Learning Inverse Models with Goal Babbling

The general idea that connects early goal-directed movements and initial feedforward control is to
take redundancy as an opportunity to reduce the demand for exploration. If there are multiple ways
to achieve some behavioral goal, there is no inherent need to know all of them. One can attempt a
partial exploration of the action space that is just enough to achieve any goal. In order to capitalize
on these insights, we have previously introduced the concept of goal babbling:

Definition [27]: Goal babbling is the bootstrapping of a coordination skill by
repetitively trying to accomplish multiple goals related to that skill.

Goal babbling aims at the bootstrapping of skills. In contrast, goal-directed exploration has been
used in several approaches only for the fine-tuning of well initialized models [12, 28]], or requiring
prior knowledge [17, [18]. Furthermore, goal babbling applies to domains with multiple goals, in
contrast to typical scenarios in reinforcement learning, in which only a single desired behavior is
considered [29], and also algorithms in control domains which only consider a single goal [30].

Goal babbling does not refer to a particular algorithm, but to a concept that can be implemented
in various ways. We investigate the learning of direct inverse models by means of goal babbling.
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Figure 3: Example of online goal babbling for a 20 DOF planar arm. The inverse estimate unfolds
with high speed even in high dimensions. The selected postures get smoother and more comfortable
over time, as indicated by the number 7 of point-to-point movements [31].

This approach resembles infants’ developmental pathway, which serves as an example of efficiency,
by acquiring at first one valid solution that can be used for feedforward control. For the learning of
such models, error-based methods are clearly disqualified by their inherent need for prior knowledge,
which leaves the choice to learn by fitting self-generated examples. Thereby motor commands ¢ are
chosen by querying the inverse model with successive goals x* and adding exploratory noise £

@ = g(x7,0;) + E(x}). (3)

Thereby goals can be chosen along continuous random paths [31]]. However, approaches to choose
goals based on predicted learning progress also exist [32]. Learning steps are then performed by
observing the result z; = f(q:) and fitting the inverse model to (x4, ¢;). For linear problems we
have recently proven [19] that this scheme does not only lead to a valid inverse model, but even to
an optimal least-squares solution when redundancy is present.

Reward-weighted Regression For non-linear problems the additional problem of non-convex so-
lution sets [18] needs to be considered. Previous studies have only shown how to deal with non-
convexity locally, for instance by reformulating the problem into a differential one [12]. However, it
turns out that goal babbling provides an elegant solution [27] for this long-standing problem. During
goal babbling, it is possible to utilize the goals as reference structure in order to resolve inconsistent
solutions. When sampling continuous paths of goal-directed movements, inconsistent examples can
only appear if either (7) the observed movement z; leads in the opposite direction of x;, or (¢%) there
is no observed movement x; at all despite a movement of the motors. This finding motivated to
simply exclude such examples by means of a weighting scheme. The first case can be simply be
detected by the angle of intended and observed movement:

wlit = % (1+ cos<t(ay — af_y, T4 — 1)) - 4)
The second case is characterized by a minimum of movement efficiency, which can also be easily
detected. The weights for both measures are then multiplied in order to exclude any of the two cases:

w;’ﬁ[ — th - xtle wy = wtdi’r’ . w;—’ﬁc . (5)
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Such a weight is assigned to each example, and the weighted error ES = wy - (¢; — g(z¢))? is min-
imized. A very similar scheme of reward weighted regression for efficiency has been used in [28]],
although coming from a completely different direction. A very positive effect besides resolving the
non-convexity issue is that the efficiency weighting causes the inverse model to select very efficient
solutions that smoothly relate to each other, because solutions with high efficiency dominate the
averaging across exploratory noise. Even in high-dimensions the procedure can therefore find very
elegant solutions for resolving the redundancy [27].

2

Partial Exploration requires Stabilization Non-convexity is not the only problem to deal with.
A more general problem is that goal-directed exploration processes tend to drift between different



redundancy resolutions, similarly to non-cyclic controllers like pure inverse Jacobian control. This
is a problem when attempting an only partial exploration because the regime of known solutions
can be left which leads to an entire degeneration of the skill. Performing goal babbling therefore
requires a stabilization mechanism to prevent such drifts. A very effective way has been proposed
independently in [27] and [33]: Instead of permanently performing goal-directed movements, the
learner returns to a “rest” or “home” position after some time, which corresponds to executing
some action ¢"°™¢, which is also repeatedly incorporated into the learning. The inverse model will
generally tend to reproduce the connection between ¢°™¢ and z°™¢ = f(g"°™¢) if it is used for
learning: g(z"°™¢) & g"°™¢. This stable point prevents the inverse estimate to drift away. Learning
can start around the home posture and proceed to other targets. Similar approaches can be applied
to forward-model-based learning and control, e.g. by applying a Nullspace-optimization towards
the home posture during goal babbling [34]. Together with the efficiency weighting, this starting
and return point also allows for a decent control of the overall redundancy resolution, which can be
exploited for learning different solution branches if necessary [35].

Example An example of the overall procedure is shown for a toy-problem in Fig.[2] A 2 DOF
robot arm is used to control the height (color-coded from blue to red) of the effector. Goal babbling
starts in the home posture, and directly spreads out along the steepest gradient. It rapidly expands
and finally reaches a phase of non-linear tuning. It is well visible that training data (green dots) is
not generated exhaustively, but partially covers the action space (left side of each (a)-(d)) along a
low-dimensional manifold, which can succeed even if Q is very high-dimensional.

4 Online Learning in the Loop

Online learning during goal babbling has turned out to be highly beneficial — and to expose ef-
fects very different from online learning on fixed data sets during which online gradient descent is
a stochastic approximation of batch gradient descent. An interesting effect can be observed when
manipulating the learning rate during the gradient descent on Eg . It turned out that the speed of
learning scales in a very non-linear manner with this learning rate: increasing the learning rate by
a factor of 10 can lead to an effective speedup of a factor 20 or 50 [31]. During goal babbling,
exploration and learning inform each other, instead of only learning being informed by exploration.
Improving with a higher learning rate then results in a more informative example in the next ex-
ploration step, which in turn accelerates learning. This behavior can be understood by means of a
positive feedback loop (see Fig.[#a)), in which the learning rate acts as a gain. In fact, the underlying
learning dynamics of goal babbling have been shown to resemble those of explosive combustions
[19] which also comprise a very non-linear phase of high-speed expansion. As a result of this feed-
back loop, and the only partial exploration described by goal babbling, exploration becomes both
very scalable to high dimensions and very fast in terms of absolute time needed to succeed. An
example is shown for a planar arm with 20 degrees of freedom in Fig. After only 100 con-
tinuous point-to-point movements, goal babbling can already roughly reach throughout the entire
workspace. Later-on refinement yields a very smooth redundancy resolution, and an accuracy in a
1mm range. Fig.4b|shows a systematic comparison across different dimensions for this setup. The
cost for the bootstrapping of a solution is measured in terms of the movements necessary to reduce
the performance error to 10% of its initial value. The median cost is approximately constant in the
entire range from two to 50 DOF. Plus, it is very low around only 100 movements, which is a speed
thoroughly competitive to human learning [36]. Recent work [37]] shows that this procedure also
allows for a very efficient identification of the reachable workspace. Sampling goals along random
directions allows to fully cover a workspace with unknown shape and size without any representa-
tion of it, similarly to vacuum cleaning robots that move along random directions and get repulsed
by obstacles. While the learning of inverse models themselves can not be evaluated against a random
exploration baseline (since inverse models cannot be learned from random data), this setup allows
to compare the workspace’s coverage of random compared to goal-directed exploration. Results
show that goal babbling permits a good coverage after 106 examples along continuous paths in a
challenging 50 DOF domain in which a pure random strategy would require at least 104 examples.

A practically highly relevant use case for these algorithms is to master the control of the Bionic
Handling Assistant (BHA, see Fig.[Ta). This robot comprises nine main actuators, which are bellows
inflated by a pneumatic actuation. Pneumatics alone are not sufficient for successful control, since
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Figure 4: Exploration and learning mutually inform each other in goal babbling. This constitutes a
positive feedback-loop during bootstrapping which substantially accelerates learning. Goal babbling
scales to very high-dimensional problems, as shown by the only marginal increase of exploratory
cost for reaching with between m =2 and m =50 degrees of freedom [31].

friction and the visco-elasticity of the bellows’ polyamide material can cause different postures when
applying the same pressure to the actuators. In our setup the robot is entirely controlled by means of
the actuator-lengths, which can be measured by cable-potentiometers, and be controlled by adjusting
the pressure with a learned equilibrium-point controller [38]]. The central difficulties for this robot
are its dimensionality, its very slow steady-state dynamics (it takes up to 20 seconds to fully converge
into a posture), and the very narrow and ever-changing ranges of the single actuators. Each actuator’s
movement is very restricted, which requires a fully cooperative movement of all actuators to move
through the workspace. Since the bellows’ material is visco-elastic, the maximum and minimum
length it can take changes over time. This implies that previously possible motor commands can
become impossible since the length is out of range. Hence, learning needs to continuously re-
discover solutions how to reach for goals. These challenges can be mastered very efficiently with
online goal babbling [39]]. Left/right and forward/backward movements can be accurately controlled
after less than 30 minutes of exploration. In contrast to revolute joint robots the BHA can also
stretch by inflating all of its actuators in a top/down direction. Such movements are more difficult to
discover since they require a highly cooperative behavior of all actuators that is difficult to coordinate
within the narrow and changing limits. Nevertheless results show that a full 3D control of the
BHA'’s effector is possible within few hours of real-world exploration. Just after learning, the control
achieves accuracies around 2c¢m, which is already reasonable considering the robot’s widely opened,
elastic gripper that can simply surround objects to grasp them. The feedforward control thereby
allows to perform very quick movements despite the robot’s long response time. If needed, however,
the accuracy can be further improved to 6-8mm by applying an additional cartesian feedback control
on top [39]], which comes with the cost that movements need to be performed very slowly in order
not to get unstable. The accuracy is thereby close to the robot’s repetition accuracy of 5mm, which
serves as an absolute baseline of how accurately the robot can be controlled at all.

5 Discussion

High-dimensional motor systems can not be fully explored even once, not to mention a re-
exploration necessary for non-stationary systems. Infant developmental studies show ways to deal
with such challenges, by starting right away with non-exhaustive, goal-directed exploration, and
learning simple, e.g. feedforward, skills in the beginning. This strategy allows to perform an ef-
fective and efficient partial exploration just to the extent that goals can be achieved. Goal babbling
allows to mimic this tremendous efficiency. This strategy is highly beneficial for technological prob-
lems with the scale of the Bionic Handling Assistant. We have introduced a series of algorithms for
the learning of direct inverse models by means of goal babbling and reward weighted regression.
These algorithms allow for a learning of very elegant solutions even in high dimensions, and with
human-competitive learning speed. Other implementations of goal babbling have recently been pro-



posed, and confirm the success of goal babbling, as well as its superiority over random exploration in
terms of bootstrapping efficiency [32} 34,140, 41]]. These results also demonstrate the general valid-
ity of the goal babbling concept. Goal-directed exploration itself is not a new idea. But considering
it as a first-class concept not only for a fine-tuning of skills has revealed interesting phenomena like
the existence of a positive feedback loop. Likewise, performing only partial exploration only goes
together with admitting that a full mastery of all possible solutions and full-scale feedback control
in the entire action space is not possible for large scale problems. This requires a stabilization that
keeps exploration and control in known regions of the action space, but with the benefit that even
large problems can be solved in a very pragmatic manner.
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