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Abstract—Young infants have been shown to help others even
in novel situations where no rewards are given or expected.
One interpretation is that this altruistic behavior is motivated
by an early form of empathy. On the other hand, infants
have also been demonstrated to help nonhuman entities, which
implies that another source of motivation may trigger an infant’s
altruism. In both cases, understanding others’ intentions and
predicting their future goals appear to be necessary for the
infant to perform such behavior. In this study, we attempted
to find the minimal cognitive abilities and possible behavioral
motivations for infants to behave altruistically. Our hypothesis
was that infants understand and predict others’ behavior and
then help them to minimize the prediction error (PE) they
estimate for others’ action goals. To verify this hypothesis, we
designed a computational model for the emergence of altruistic
behavior and performed two experiments in order to determine
the minimal cognitive abilities required to estimate the PE and
demonstrate that PE minimization is a possible motivation for
altruistic behavior. Our experimental results showed that the
ability to recognize and predict others’ actions is indeed required
to generate a PE and that its minimization can motivate altruistic
behavior without any given or expected rewards.

I. INTRODUCTION

Why do we help each other? What is the motivation that
makes us help others in various situations? These questions
have been debated by scientists in different disciplines, and
hypotheses have been made. Three of the main theories are as
follows (for a more detailed review, see [1]):

1) Selfish altruism: We help others to get an immediate
benefit [2]. For instance, if a fruit is inaccessible to an
individual alone, helping each other and sharing the fruit
will procure a direct food reward for both individuals.

2) Kin (familial group, relatives) altruism: This theory was
first been established by Darwin [3] and updated by
Hamilton et al. [4]. According to them, “natural selection
could encourage altruistic behavior among kin so as to
improve the reproductive potential of the family.”

3) Reciprocal altruism: Trivers et al. [5] hypothesized that
we help others at an immediate cost but for a predicted
higher reward in the future.

These three theories account for the origin of human adults’
altruism. However, to find the underlying mechanisms for the
emergence of altruistic behavior, evidence of infant altruism
should be analyzed as well.

A. Evidence in young infants

Like adults, infants may help others in an altruistic manner
when others fail to achieve their goals, even in novel situations
where no rewards are received or expected by the infants
[8]. Such behavior, which benefit others without any evident
rewards to the infants, have been widely observed in human
and non-human animals. Darwin [3] and Robert et al. [4] pos-
tulated that these altruistic behavior could have been acquired
through natural selection. However, the above theories and
current knowledge do not fully explain the emergence of such
altruistic behavior. To unravel the underlying mechanisms of
these early helping tendencies, studies on infants’ altruistic
behavior must be carefully reviewed, and a more general
theory must be formulated.

Even though infants’ altruistic behavior has been scientif-
ically observed for several decades and is a well-addressed
topic in developmental science, the underlying mechanisms
for their emergence are still not well understood. For instance,
Warneken and Tomassello [6]–[8] performed a series of ex-
periments on 14-month-old and 18–24-month-old children in
order to demonstrate the infants’ tendency to help others in
novel situations where no rewards are given or expected. Their
results showed that even infants from 14 months of age were
able to altruistically help others in simple cases (e.g., “out-of-
reach objects” but not “wrong mean, wrong end”). Warneken
and Tomassello postulated that, from 14 months of age, infants
can help others by predicting their goals and understanding
their directed motion (e.g., stretching the arm toward an object
to grasp it). However, the motivation behind the emergence of
such behavior remains unclear.

Tomassello et al. [9] suggested that, in order to help oth-
ers in novel situations, infants must “acquire socio-cognitive
abilities to represent others’ goal, visual perspective-taking and
imitation.” Indeed, infants from 14 months of age already have
the ability to predict reaching actions [10], [11] and detect
anomalies in action sequences [12]. These studies theorized
that infants help others thanks to an early form of empathy
toward their adult conspecifics [7], [8], but this hypothesis
cannot explain all aspects of altruism. Recent experiments have
shown that 18-month-old infants can help spherical objects
with no human-like body to achieve their goal, which may
imply that empathy elicited by direct body matching does not
apply here [14]. The authors postulated that altruistic behavior



may be “primed by the unfulfilled goal.” These findings
seem to imply that other motivation mechanisms apart from
empathy are involved in the emergence of infants’ altruistic
behavior. Furthermore, some autistic children, who are known
to have varying deficits in forming empathetic connections
with others, have also been shown to help others (e.g., out-of-
reach situations) almost as effectively as normally developed
children [13].

B. Our hypothesis: prediction error minimization

Our hypothesis is that young infants help others to minimize
the prediction error (PE) they estimate for others’ action goals.
This assumption is based on studies showing that the PE is
triggered in the brain as a teaching signal [15] and that the
PE produces “strong motivation urges that are not justified by
any memories of previous reward values” [16].

To verify this original idea and determine the motivation
behind infants’ altruistic behavior, we first studied the role
of PE minimization as a behavioral motivation in young
infants. Then, we designed a simple system that mimics the
development of behavior in infants and is based on well-
established studies and computational models of the brain
(e.g., [17]–[19]). The system tries to reproduce the mecha-
nisms for the emergence of altruistic behavior in young infants
by reproducing infants’ known cognitive abilities and motor
skills and minimizing the PE to generate a motivation signal.
We attempted to verify our hypothesis by identifying the
cognitive abilities required by young infants to estimate the PE
and by showing that PE minimization is a possible motivation
for altruistic behavior. The rest of this article is organized as
follows. First, we present our model for the emergence of
altruistic behavior. Then, we discuss our experiments and the
obtained results before concluding with the implications of our
results toward the understanding of the emergence of altruistic
behavior.

II. MODEL FOR EMERGENCE OF ALTRUISTIC BEHAVIOR

Fig. 1 shows the design of our model for the emergence
of altruistic behavior, which consists of four interdependent
modules: recognition, prediction, PE, and action. These mod-
ules represent the ability to recognize others’ action primitives
and their context (e.g., objects near other individuals, the state
of an object), to predict others’ next action primitives and
their goals, to generate a motivation signal (i.e., PE), and to
generate behavior that minimizes the PE, respectively. The
four modules share and use the knowledge of the system’s
past experiences, which are represented by a statistical action
tree. Details about the modules and tree are explained in the
following subsections.

A. Statistical action tree

In order to memorize the system’s past experience, we
created a statistical action tree based on a model developed by
Doya et al. [22]. The statistical action tree is made of nodes
S that represent all of the previously observed actions. These
nodes can be of two types: the action nodes A represent action

Figure 1. Model for emergence of altruistic behavior. The four modules
share and use the knowledge of the system’s past experiences through a tree
structure built from the observation of others’ actions.

primitives, and the condition nodes C represent the context of
the action primitives. The nodes are Boolean variables and can
take a value of 1 (active) or 0 (inactive).

S = {A ∪C}, (1)

A = {A1, A2, ..., Ai} and C = {C1, C2, ..., Cj}. (2)

Fig. 2 shows an example action tree for two observed
actions: “Reach for the Ball and Take it, and then Throw the
Ball” and “Reach for the Ball and Take it, and then Open
the Box and Put the Ball inside the Box.” In this example,
A = {A1, A2, A3, A4, A5} and C = {C1, C2}. A2 is the
child node of A1, while A1 is the parent node of A2.

The action node corresponding to the observed action prim-
itive is denoted as Ai(n) ∈ A, and the condition nodes rep-
resenting its context are contained in the subset CAi(n) ⊂ C.
n represents the current discrete time step of the system. In
Fig. 2, for instance, the action primitive “Put the Ball inside
the Box” is described by the action node “Put” (A5(n)) and
the condition nodes “Ball” and “Box,” which are contained in
CA5(n) = {C1, C2}.

The statistical action tree is built and updated when the
system observes actions1 performed by others. The action
tree construction is ruled by different mechanisms. When a
new action primitive is observed, the action node Ai(n) is
added to the action tree and is connected to the corresponding
condition nodes CAi(n). If some of the condition nodes are
not included in the action tree, they are added. The average
duration of the action primitives TAi(n) is measured, and
the number of occurrences is initialized OAi(n) = 1. If the
observed action primitive is already contained in the tree,
TAi(n) is updated, and OAi(n) is incremented. When an action
primitive is observed after another and if the duration of the
first action primitive TAi(n) is lower than the value Tmax,
a new observed action node Ai(n) is connected with the
previously observed action primitive Ah(n−1) by the directed
arrow Nh,i = {Ah(n−1), Ai(n)}. However, if TAi(n) > Tmax,
the system assumes that it has observed a new action and thus

1Hereafter, the term “action” refers to a sequence of action primitives.



Figure 2. Example of statistical action tree created after observation of the
sequence of action primitives: “Reach for the ball and take it, then throw the
ball” and “Reach for the ball and take it, then open the box and put the ball
inside the box.”

applies the same mechanism as if the new action primitive was
independently observed.

B. Recognition module

This module recognizes the action primitives and the con-
textual information from a currently observed action. These
two kinds of information are sent to the statistical action
tree (see Section II-A) and are compared with the action
nodes Ai(n) and context nodes CAi(n). When a certain ac-
tion primitive and context are recognized, Ai(n) = 1 and
Cj = 1; ∀Cj ∈ CAi(n). In the current experiment, we used
symbolic representations of actions and contexts; thus, the
system did not need to extract these kinds of information from
the image.

C. Prediction module

The prediction module tries to predict the next action
primitive to be executed by others based on the last observed
action primitive and the knowledge contained in the statistical
action tree. This module calculates the probability of a child
action node Al(n+1) to be activated knowing the observed
action Ai(n) and conditions for the next action CAl(n+1):

P (Al(n+1) = 1|Ai(n),CAl(n+1)). (3)

In the system, P (Al(n+1) = 1|Ai(n),CAl(n+1)) = 0 if
the value of at least one of its conditions Cj ∈ CAl(n+1)

is 0. If Cj = 1;∀Cj ∈ CAl(n+1), then the probability of the
child action node Al(n+1) depends only on the observed action
primitive Ai(n), as described in the following equation:

P (Al(n+1) = 1|Ai(n),CAl(n+1)) =

min(CAl(n+1)) · P (Al(n+1) = 1|Ai(n)).
(4)

Finally, this module predicts the future action node Apredict

with the highest probability to be activated, and its probability
is denoted as P (AMax(n+1)):

P (AMax(n+1)) = max(P (Al(n+1) = 1|Ai(n),CAl(n+1))).
(5)

Figure 3. Example of PE generation.

D. Prediction error module

The PE module measures the PE for the most probable
future action primitive Apredict to occur. The PE depends on
three main components:

1) The probability of Apredict to be activated:
P (AMax(n+1)).

2) The number of occurrences OApredict
of Apredict.

3) The difference between the average duration TAi(n) of
the observed action Ai(n) and the elapsed time (defined
as te) since the action node Ai(n) has been recognized.

The choice of the PE is reasoned by the fact that, if the
prediction of an action primitive is not certain or if an action
has only been observed a few times in the past, the PE value
should not be high. In addition, the prediction should be higher
if the elapsed time te is higher than the average duration TAi(n)

of the observed action Ai(n).
Thus, the value of PE for Apredict is given by

PE = β · P (AMax(n+1))(1− e−OApredict )·
·(1− e(TAi(n)−t)),

(6)

where β = 0 when TAi(n) ≥ t, else β = 1. β sets PE = 0
when the elapsed time is shorter than the average duration
TAi(n) of the observed action Ai(n). The PE then increases as
t becomes greater than TAi(n).

Fig. 3 depicts an example of PE generation.

E. Action module

The action module generates actions to minimize PE. Based
on the mirror neuron system [20], we hypothesized that
observing others’ failure to execute their actions activates
infants’ self-action as a response. Thus, if PE > Θ, where
Θ is a threshold empirically fixed at 0.6, the action module
executes the predicted action primitive Apredict as an output
of the system.

III. EXPERIMENTS

We designed experiments to examine what cognitive abili-
ties are required by the system to estimate a high PE signal
and whether a system based on PE minimization can generate
altruistic behavior without any external rewards.

A. Method

The experimental method was inspired by the procedures
developed by Tomassello and Warneken [6], [7], who con-
ducted developmental studies on infants’ altruistic behavior.



The system was first trained with different series of fully
accomplished actions. During this training phase, the system
created a statistical tree, as presented in Section II-A. Then,
during the testing phase, series of non-accomplished actions
were presented to the system while the PE was measured. In
order to study the effects of the system’s cognitive abilities
(i.e., recognition and prediction) on the calculation of the
PE, the amount of experience given to the system during the
training was varied. The actions used for our experiments and
the method to build the statistical tree are described below.

1) Actions: For our experiments, we defined fourteen ac-
tions that are combinations of eight different condition nodes
(ball, book, mug, table, opened closet, closed closet, opened
box, closed box) and six different action primitives (reach for,
grasp, open, close, put, carry). Table I gives example actions.

Actions
action 1 Take the ball from the table and carry it to the closed box
action 2 Take the ball from the table and carry it to the opened box
action 3 Take the ball from the table and put it in the closed closet
... ...
action 12 Take the book to the table
action 13 Take the book from the closed closet to the table
action 14 Take the book from the opened closet to the table

Table I
EXAMPLE ACTIONS

Figure 4. Example tree for action “Take the ball from the table and carry
it to the closed box” executed once and action “Take the ball from the table
and carry it to the opened box” executed twice. The red nodes are conditions,
and the black nodes are actions. The numbers inside the action nodes are the
number of times these action primitives were observed.

These actions were designed to have different difficulties
of prediction. For some actions, the goals (i.e., next action
primitives) were easily predicted because only one possible
future node exists. For others, prediction was more difficult
because there were several possible future nodes. Actions
could also fail for some reasons. For example, “out-of-reach”
caused a failure to reach for an object, and “physical obstacle”
caused a failure to use or interact with an object because of a
physical constraint (e.g., failure to open a door because of the
large size of the object being carried). We expected that these
failures would trigger an increase in the PE.

Figure 5. Average maximum value of PE after time t = tMAX as function
of number of actions experienced (N ae). Five levels of N ae were used :
small, small-medium, medium, large-medium, and large.

2) Action tree: As noted in Section II-A, the action tree
was built by observing a sequence of actions, as presented in
Table I. During the training phase, all actions were correctly
performed, and each action primitive was followed by a pause
of 1–2 s. The context of the actions (e.g., objects, states
of objects) was also known for the action tree during the
training phase. Fig. 4 shows an example action tree created by
presenting action 1 once and action 2 twice (see Table I for
the definitions of actions 1 and 2). The number of activations
of each action primitive, which is indicated by the number in
each node, was used to estimate the transition probabilities
between the nodes.

B. Experiment 1: prediction error generation

1) Experiment setting: This experiment was aimed at mea-
suring the influence of the recognition and the prediction
module’s efficiency on the generation of a PE. To study
the efficiency of these modules, we gradually increased the
number of actions used to train the system and the number
of times each action was used. The number of actions used
during the training and how many times each action was used
are denoted as the number of actions experienced (or N ae).
The experiment was conducted several times for five different
levels of N ae, which are defined below:

Small: four observed actions once;
Small-medium: six observed actions twice;
Medium: eight observed actions twice;
Large-medium: twelve observed actions three times;
Large: fourteen observed actions four times.

2) Results: Fig. 5 depicts the maximum PE in terms of
N ae when e(tAi(n)−t) = 1 (see Eq. 6), which is arranged
from small to large. The results showed that the maximum PE
was low when N ae was small and that it increased when N ae
became larger. These results are summarized in Table II and
show that the system needed to receive sufficient experience
to estimate a large enough PE superior to the minimization
threshold Θ = 0.6.

C. Experiment 2: prediction error minimization

As we demonstrated that a PE could be generated when
N ae was large enough, the second experiment was intended to



Figure 6. Percentage of times system acted and helped while observing others’ unsuccessful actions as function of number of actions experienced (N ae).
The acted value means “how many times (in percentage) the system performed an action for the failed observed actions.” The helped value means “the number
of times (in percentage) the system succeeded at minimizing the PE for the failed observed actions.” Five levels of N ae were used: small, small-medium,
medium, medium-large, and large.

N ae Average maximum PE Acted Average action delay Helped Wrong action Wrong prediction
Small 0.377 9.52% 10.4s 0% 100% 0%

Small-medium 0.555 33.33% 9.7s 7.14% 60% 40%
Medium 0.6619 45.24% 6.8s 11.90% 71.43% 28.57%

Large-medium 0.7653 49.99% 4.3s 16.66% 78.58% 21.42%
High 0.7625 54.76% 3.6s 19.04% 80% 20%

Table II
RESULTS SUMMARY: MEAN VALUES OF ALL RESULTS FROM EXPERIMENTS 1 AND 2. THE DIFFERENT LEVELS FOR THE NUMBER OF ACTIONS

EXPERIENCED (N AE) ARE AS FOLLOWS. SMALL: FOUR OBSERVED ACTIONS ONE TIME, SMALL-MEDIUM: SIX OBSERVED ACTIONS TWO TIMES,
MEDIUM: EIGHT OBSERVED ACTIONS TWO TIMES, LARGE-MEDIUM: 12 OBSERVED ACTIONS THREE TIMES, HIGH: 14 OBSERVED ACTIONS FOUR TIMES.

THE COLUMNS FOR WRONG ACTION AND WRONG PREDICTION REPRESENT WHEN THE SYSTEM COULD NOT HELP WHEN IT ACTED.

show that PE minimization could allow the system to generate
action primitives to help others.

1) Experiment setting: The setting was similar to that of
experiment 1, and the tests were performed with the five same
levels of N ae in order to examine how N ae affects the
emergence of helping behavior. In this experiment, however,
when PE was larger than the fixed threshold (PE > Θ), the
system generated the predicted action primitive. For instance,
if the system predicted the next action primitive to be “open
the door” and PE > 0.6, the system would generate the action
primitive “open the door.”

2) Results: Fig. 6 shows the percentage of action executions
(acted) and successful help (helped) in terms of the different
N ae. The acted values are the percentage of times the system
executed an action to try to minimize PE when a failed action
was observed. The helped values are the percentage of times
the system successfully helped and thus minimized PE when
it acted. The results presented in Table II are explained below.

Small: the system rarely generated any actions (9.52%)
because the PE almost never reached the threshold.

Small-medium: the system generated few actions (33.33%)
and rarely succeeded at helping others (7.14%) because most
of the predicted actions required helping for “out-of-reach.”

Medium: the system generated actions for 45.24% of the
observed actions but minimized PE for only 11.90% of the
trials for similar reasons as “small-medium.”

Large-medium: the system acted for 49.99% of the observed
actions and efficiently helped others and minimized PE for
16.66% of the trials.

Large: the system acted for 54.76% of the observed actions
and efficiently helped others and minimized PE for 19.04% of
the trials.

The “acted” performance of the system was satisfactory,
which means that the system could predict the future action
primitive with enough certainty to reach PE > Θ. How-
ever, the “helped” performance remained relatively low. Two
reasons why the system failed to help may be because the
best action primitive to help others was sometime different
from the predicted one (76.7% of the cases) and because the
prediction was incorrect and thus the executed action primitive
to minimize the PE was inadequate (23.3% of the cases). With
our current model, the system did not know how to efficiently
help in these cases.

This experiment also showed that the system’s performances
improved along with N ae. Furthermore, the actions used
during the training phase and the testing phase were different,
which means that the system was able to generalize its
knowledge for relatively novel situations.

IV. DISCUSSION

In this study, we attempted to explain the emergence of
altruistic behavior in young infants by proposing PE minimiza-
tion as sufficient behavioral motivation. We conducted two
experiments to verify that action recognition and prediction
ability are required by young infants to estimate PE and
that PE minimization is a possible motivation to account for
helping behavior.



The results of the first experiment showed that being able
to recognize others’ actions and to predict others’ goals were
required to estimate a large PE. These finding were consistent
with those of other developmental scientists, as presented in
the introduction [6]–[8].

The results of the second experiment confirmed that PE
minimization is a possible source of motivation for altruistic
behavior. Indeed, the system was able to generate actions in
order to minimize PE for various types of actions. However,
the system was sometimes unable to efficiently help others
because the best action primitive to help others was different
from the predicted one or because the prediction was incorrect.
In fact, the differences in perspective between the system and
others may have prevented our model from executing efficient
actions.

To further support our main hypothesis, the next step will
be to highlight what gives infants the ability to understand
which actions would help others in a given context when they
cannot achieve their goals by themselves. One solution is that
infants can change their visual perspective while observing
others performing actions. This cognitive ability is noted by
Tomassello et al. [9] as a socio-cognitive need for infants’
altruistic behavior. Instead of understanding “what should I
do to perform this action,” infants must find “what is the best
way to help others accomplish their action.” Moll et al. [21]
showed that 24-month-old infants required the perspective-
taking ability in order to help others achieve unsuccessful goal-
directed actions. Another possible solution is to measure the
PE in terms of the state and not in terms of the action as we
did here. Finally, the fact that action recognition and prediction
may not be sufficient for the emergence of altruistic behavior
suggests that infants from 14 months of age might also become
able to predict the best way to help others.

V. CONCLUSION AND FUTURE WORK

We showed that the ability to recognize and predict others’
actions is required to estimate the PE and that minimizing the
PE may indeed motivate altruistic behavior without any given
or expected rewards.

Our experiments confirmed the hypothesis that minimizing
the PE can motivate the emergence of altruistic behavior to
a certain extent. However, the results also showed that the
actions performed by the system to attempt to minimize the
PE were not able to efficiently help others accomplish their
actions when the best way to help them could not be directly
predicted. Future research will be aimed at improving the
system performance by integrating infants’ ability to perform
perspective taking while observing others executing actions
and showing that this ability is required for the emergence of
infants’ altruistic behavior.
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