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I. INTRODUCTION

Flexible tactile sensors are important elements for facilitating the physical interaction between robots and uncertain environ-
ments. For instance, tactile information is used by the robot to grasp objects and interact with humans. A model-based approach
is one technique for building a relationship between tactile sensor values and task-relevant information such as force, slip, and
temperature. However, it is difficult to create models of flexible tactile sensors for converting sensor signals beforehand due
to a nonlinear relation between a contact and the deformations of the flexible form caused by its hysteresis [1]. In contrast,
machine learning techniques can be adopted to represent these relationships. For example, Tada et al. [2] proposed a model to
acquire the relationship between tactile sensor values and slip vibration using a neural network.

The purpose of this study was to develop computational models for learning the association between the force applied to
a tactile sensor and the sensor value by compensating for the hysteresis in the sensor. We used the tactile sensor of an iCub
fingertip in order to apply our models to cognitive studies. This paper first presents our proposed models that consider a Markov
property of taxel (tactile sensor elements) values, and then reports experimental results.

II. METHOD
A. Setup

We measured the taxel values and force-torque (F/T) sensor values to conduct a learning experiment. Fig. 1(a) shows the
experimental setup. We attach an iCub’s fingertip to a grip, as shown in Fig. 1(b). The fingertip is composed of two types of
silicone, a flexible PCB, and an inner support [3]. Twelve electrodes are distributed on the PCB, which construct capacitors
with the conductive silicone layer. When a force is applied to the fingertip, the capacitance changes due to the deformation of
the silicone. This sensor is known to have hysteresis between a contact force and the taxel values [3].

In the experiment, an experimenter periodically pressed the tactile sensor in the direction of gravitational force on the center
of the F/T sensor. We use a Nano 17 F/T sensor (ATI Industrial Automation) to measure the force along the Z-axis Fz . We
measured the taxel values as a 12-dimensional vector and F/T sensor values at a 50 Hz sampling rate.

B. Gaussian process and proposed models

We employed a Gaussian process (GP) to learn the relationship between taxel values as the input θ and force values as
the output f(θ). A GP is a probabilistic model given by f(θ) ∼ GP(mf , kf ), where mf and kf are its mean function and a
covariance function, respectively [4]. We chose a zero mean function and a squared exponential covariance function, which
provides the covariance element between any two samples θp, and θq. This function is given by

k(θp,θq) = σ2
fexp(−1

2
(θp − θq)

TM(θp − θq)), (1)

with M = l−2I . Here, I is the identity matrix and the signal variance σ2
f and the length-scale l are the hyperparameters. We

used a marginal likelihood to optimize the hyperparameters of the covariance function [4].
We propose two GP models, which assume the Markov chain of taxel values in order to compensate for the hysteresis of

the tactile sensor. The first model employs multi-step time series data of input signals. For instance, if we assume a Markov
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Fig. 1. Experimental setup and grip with fingertip.
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(c) Second proposed model

Fig. 2. Estimation results of each model.



TABLE I
PERFORMANCE OF EACH MODEL

Condition Root mean square Correlation coefficient Abs. maximum error (N)
Normal GP model 1.035 0.933 3.625
Considering Markov chain model (n = 3) 0.561 0.981 1.944
Considering ∆θt in addition to Markov chain model (n = 3) 0.559 0.981 1.952
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Fig. 3. Performance of first proposed model with different Markov orders.
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Fig. 4. Performance of second proposed model with different Markov orders.

chain of order n, this model requires the assembled input data given by Θt = [θt,θt−1, · · · ,θt−n]
T to estimate applied force

at time t. The second model uses the difference between two consecutive input signals in addition to the multi-step time series
data. Here, the difference is given by ∆θt = θt − θt−1. The learning data with an n-order Markov chain are described by
Θt = [θt, ∆θt,θt−1, · · · ,θt−n+1,∆θt−n+1,θt−n]

T at the time t.

III. EXPERIMENTS AND RESULTS

We trained all models to compare their accuracy in terms of estimating the force value from unknown taxel signals. Fig.
2 shows the model estimations. Table I summarizes the performance of all the models. We calculated the root mean squared
error, correlation coefficient between the true force and estimated force, and absolute maximum error. A normal GP model
that does not consider a Markov chain of the sensor signals was used for comparison.

A. Normal GP model

This model generally provided accurate the estimation as depicted in Fig. 2(a). However, the error between the true and
estimated values increased when the force had a peak value at Fz ' −10 N. The estimation has a step form and delay compared
to the true value. Using only current taxel values, the GP was unable to estimate the force data precisely due to the hysteresis.

B. Considering n-order Markov chain of tactile signals

We tested the first proposed model using the same dataset as in the previous experiment. Fig. 2(b) shows the estimated
values. The estimation was closer to the truth than the normal GP model, especially at the force peak points. The performance
clearly improved compared to the previous model, as presented in Table I. Fig. 3 shows the change in the estimation accuracy
with different Markov orders n. The model performed the best when n = 3.

C. Considering ∆θt in addition to n-order Markov chain of tactile signals

Fig. 4 shows the performance of this model with different Markov orders n. When n = 3, the model exhibited the best
accuracy, just like the first proposed model. Fig. 2(c) shows the estimated values from the same data used in the previous
experiments. The root mean squared error slightly reduced from the first proposed model. This is because the learning data
included deformation directions of the sensor, which are important for representing the hysteresis as a dynamic phenomenon.

IV. DISCUSSION AND CONCLUSION

We proposed models based Gaussian process using the Markov chain of taxel values in order to compensate for the hysteresis
of a tactile sensor. Our models were able to accurately estimate the force applied to the tactile sensor. These models can also
be applied to various types of flexible tactile sensors other than those embedded in the iCub robot.

We assume that the GP can internally represent differences between two consecutive signals because of the slight difference
in the accuracy between the first and second proposed models. Further studies are needed in order to examine the internal
representation of our proposed models.
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