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Abstract— Flexible tactile sensors have been studied to enable
robots to interact with objects in unstructured environments.
However, due to nonlinearity caused by the hysteresis of tactile
materials, it is difficult to accurately convert sensor signals into
task-relevant information such as force and slip.

To compensate for the hysteresis of flexible tactile sensors,
we propose a model based on a Gaussian process. The key
idea of our model is to include the Markov property of sensory
input. The proposed model not only uses the current tactile
signal, but also its time-series signals, to extract the influence of
the past states on the current state. We evaluate the accuracy
of force estimation using the proposed model in comparison
to the normal Gaussian process model, which does not take
the Markov property into account. The experimental results
demonstrate that the performance of our model improves on
the normal Gaussian process in terms of root mean squared
error, correlation coefficient, and absolute maximum error
between the actual and the estimated force. We discuss the
advantages of accounting for the sensory Markov property
and the potential ability of the Gaussian process to internally
acquire the representation of the deviation of sensory signals.

I. INTRODUCTION

Tactile sensors play an important role in introducing robots
into human society. Like humans, robots should be able to
manipulate objects and interact with humans through tactile
information. To this end, flexible tactile sensors comprising
many sensor elements, which may cover all or part of a
robot’s body, have been widely studied to improve the quality
and adaptability of tactile interaction.

When robots use data from tactile sensors to accomplish
a task, they need to convert the sensory signals into task-
relevant information such as force, slip, and vibration. For
example, in a grasping task, robots need to detect reaction
force and slip for manipulating objects. The method for
processing these sensor signals to acquire task-relevant in-
formation needs to initially compensate for the hysteresis of
flexible sensors due to the nonlinear relation between applied
force and deformation of the sensors [?]. The hysteresis
hinders the estimation of task-relevant information: in this
phenomenon, the sensor outputs different values from the
same input, depending on context. For instance, sensor
outputs are different depending on a phase, which the sensor
is pushed or released.

A model-based approach is a technique to represent such
a relationship between sensor signals and task-relevant infor-
mation. A Bouc-Well model [?] is often used to represent the
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hysteresis phenomenon in which the input-output dynamics
involves the memory effect such as the deformation of soft
materials. This model is composed of a first-order nonlinear
differential equation and several parameters that modify
the behavioral characteristics of the model, depending on
context. Sánchez-Durán et al. [?] applied a Prandtl–Ishlinskii
model to their tactile sensors to reduce the effects of hystere-
sis from the output voltage of a sensor element. The Prandtl–
Ishlinskii model consists of an arctangent or exponential
equation that represents the hysteresis curves. These models,
however, only represent the relationship between single input
and single output. When it is necessary to estimate applied
force distribution and direction from extensive tactile sensors
(many tactile sensor elements, hereafter taxels), compensa-
tion models require a priori knowledge of the positional
relations of sensor elements to integrate the information.

In contrast, machine learning techniques are applicable
for representing relationships between multi-input sensor
signals and task-relevant information. For example, Tada et
al. [?] developed a neural network model to determine the
relationship between tactile sensor values and slip, detected
as visual information. Takamuku et al. [?] proposed an
object recognition model based on a self-organizing map
implemented in a robot hand with flexible tactile sensors.
The self-organizing map utilized taxel values after the robot’s
hand grasped objects intermittently ten times. However, these
studies did not focus on the dynamical change of taxel values
due to hysteresis of the tactile sensor, which diminishes the
estimation accuracy.

This paper proposes a model based on the Gaussian
process to compensate for the nonlinearity of flexible tactile
sensors. One key idea is to integrate the Markov property
of the sensory input, to reduce the effect of hysteresis of
tactile sensors. The proposed model uses the history of tactile
signals in addition to the current signal, to examine the
influence of past states on the current state. We compare
the accuracy of force estimation by both a normal Gaussian
process, which does not consider the Markov property and
the proposed method, using an iCub fingertip [?]. Our
expected result is that the proposed model shows higher
accuracy in the estimation than the normal Gaussian process
model thanks to the richness of the input signals. We discuss
the advantages of integrating the sensory Markov property
into the Gaussian process.



II. MODEL TO COMPENSATE FOR HYSTERESIS

A. Gaussian process

We employ a Gaussian process (GP) [?] to build the
relationship between taxel values as input θ and force values
as output f(θ). f(·) is a latent function of the output. This
model estimates f(θ) from θ by using an infinite number of
joint Gaussian distributions. A GP is a probabilistic process
given by its mean function mf and a covariance function kf :

f(θ) ∼ GP(mf , kf ). (1)

We assume a zero mean function and a squared exponential
covariance function, which provides the covariance element
between any two samples θp and θq. This function is given
by

k(θp,θq) = σ2
fexp(−1

2
(θp − θq)

TM(θp − θq)), (2)

where M = l−2I . Here, I is an identity matrix and the
length-scale l and the signal variance σ2

f are the hyperpa-
rameters.

Given learning dataset T , which consists of input vectors
θ1, · · · ,θD and an output vector v = [f(θ1), · · · , f(θD)]T ,
the output f(θ∗) for an unknown input θ∗ is estimated as a
distribution of

P (f(θ∗)|T ,θ∗) = N (µ(θ∗), σ
2(θ∗)) (3)

µ(θ∗) = kT
∗ (K + σ2

nI)
−1v (4)

σ2(θ∗) = k(θ∗,θ∗)− kT
∗ (K + σ2

nI)
−1k∗, (5)

where k∗ = [k(θ1,θ∗), · · · , k(θD,θ∗)]
T , K is a matrix

composed of Ki,j = k(θi,θj). σ2
n is the noise variance. We

use a marginal likelihood to optimize all hyperparameters
[?].

B. Proposed models

We propose a GP model using sensory Markov property to
reduce the effect of the hysteresis of flexible tactile sensors.
Our model utilizes the multistep time series taxel values as
the input. Fig. 1 shows the graphical representation of this
model. If we assume the Markov property of order n, input
data Θn

t at time t are given by

Θn
t = [θt,θt−1, · · · ,θt−n]

T . (6)

If the dimension of current sensor signal vector θt is d, the
dimension of input vector Θn

t becomes d× (n+ 1).

III. EXPERIMENTAL SETUP

A. iCub fingertip

Fig. 3(a) shows an iCub fingertip (a black part) attached
on a grip for an experimenter to manipulate it. The iCub
fingertip consists of an inner support, a flexible printed-
circuit board (PCB) attached on this support, and two types
of silicone: dielectric silicone placed on the PCB and con-
ductive silicone covering the fingertip [?]. Twelve electric
round pads are distributed on the PCB, which form capacitors
with the conductive silicone. When a force is applied to the
fingertip, the capacitance changes due to the deformation of

Fig. 1. Graphical representation of GP model with n-order Markov chain
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Fig. 2. Hysteresis of iCub fingertip under our experimental conditions

the silicone. The size of fingertip is 14.5 mm long and 13
mm wide. In our experiment, we use a new type of fingertip,
which is covered by fabric instead of the conductive silicone.

This fingertip is known to have hysteresis [?]. Fig. 2 shows
the hysteresis property of the iCub fingertip. The horizontal
and vertical axes denote the applied force and the value of a
taxel out of the number six sensor, respectively. The blue line
indicates the results for the first pushing movement, whereas
the red and the green lines show the successive movements. It
is clear that the property of the initial deformation is different
from that of subsequent deformations.

B. Data collection

We record taxel values and force-torque (F/T) sensor
values to test our model. Fig. 3(b) shows the experimental
setup. We use a Nano 17 F/T sensor (Fig. 3(c)), a product
by ATI Industrial Automation, to measure force and torque
in three axes (i.e. Fx, Fy , Fz , Tx, Ty and Tz).

The fingertip is periodically pressed on the center of the
F/T sensor by an experimenter, first independently in the X-,
Y-, and Z-directions, then simultaneously. We measure the
taxel values as a 12-dimensional vector and the F/T sensor
values with a 50 Hz sampling rate. Figs. 4(a) and 4(b) plot
the recorded data under one-directional force (Z-axis) and
three-directional force conditions, respectively. The collected
data are divided into a learning dataset (80%) and a testing
dataset (20%). The testing dataset is indicated by red in Figs.
4.
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Fig. 3. Experimental setup and grip with fingertip

IV. RESULTS

There are three conditions in our experiment:
One-directional force condition:

An experimenter pushed the fingertip periodically
in each of the three directions (X, Y, or Z), while
maintaining the contact point between the fingertip
and the F/T sensor. The proposed model trained
with a single directional force was tested with the
data for the same direction.

Three-directional force condition:
The fingertip was simultaneously pressed in the
three directions. As under the one-directional con-
ditions, the contact point was maintained through-
out the experiment.

Cross learning condition:
We trained our model by using the dataset for the
three-dimensional force condition, then tested the
model with the data for each direction.

A. One-directional force condition (Z-axis)

1) Normal GP model: First, we estimated Fz under
the one-directional force condition. The normal GP model,
which does not consider a Markov chain of the taxel values,
was examined for predicting the time series of force values
from unknown input. The performance of this model is
summarized in Table I. We evaluated root mean squared error
(RMSE), correlation coefficient (CC) and absolute maximum
error (AME) between the actual and the estimated force.

The output of this model is presented in Fig. 5(a). The
estimation of this model is generally accurate. However, the
error between the actual and the estimated values increases
around the peaks of the force value at Fz ' −10 N
(Fig.5(b)). It is clear in Fig. 6(a) that the estimation shows
a stepped form, while lagging behind the actual value. This
temporal delay is attributable to the hysteresis of the tactile
sensor, which is caused by the nonlinear deformation of the
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(a) One-dimensional force condition (Z-axis)
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(b) Three-dimensional force condition

Fig. 4. Recorded taxel values and force value from each experiment

flexible material. The GP using only the current taxel values
was unable to predict the force value with sufficient accuracy
because it is less capable representing the hysteresis of the
tactile sensor as dynamic phenomenon.

2) GP model with n-order Markov chain: We evaluated
our model by using the same dataset as in the previous
experiment. The estimation accuracy of the model with
different Markov orders n (see Eq. 6) is compared in Fig.
7. This model achieved the best performance when n = 3.
Significant improvements in the performance of this model
compared to the normal GP are listed in Table I.

Additionally, the delay in the estimation decreased from
the previous model. Fig. 6(b) shows the estimated value
similar to Fig. 6(a). The estimation is closer to the measured
value than the normal GP, particularly at the force peak
points.

B. One-directional force condition (X- and Y-axes)

Typically, a tactile sensor consisting of sensor elements,
which are placed planarly, can only measure normal force
because flat sensors are unable to detect shearing stress.
However, the iCub fingertip is composed of sensor elements
that are placed on a curved surface. Therefore, it is able to
measure the shearing force such as Fx and Fy .

We trained each model by using a dataset of experimental
conditions at X- and Y-axes. The performance of each
condition is shown in Table I. The accuracy of our model
is greater than that of the normal GP model under both
directional force conditions.



TABLE I
PERFORMANCE OF ALL MODELS AND CONDITIONS

Condition Model
Fx Fy Fz

RMSE CC AME (N) RMSE CC AME (N) RMSE CC AME (N)

One-dimensional Normal GP model 0.955 0.959 2.847 0.645 0.979 3.055 1.035 0.933 3.625

force condition Proposed model 0.718 0.977 2.000 0.447 0.989 2.014 0.561 0.981 1.944

Markov order n = 6 n = 6 n = 3

Three-dimensional Normal GP model 0.792 0.979 2.115 0.549 0.980 1.654 1.493 0.879 3.941

force condition Proposed model 0.714 0.983 1.932 0.518 0.981 1.503 1.006 0.948 3.210

Markov order n = 5 n = 11 n = 10

Cross learning Normal GP model 1.664 0.870 4.218 1.505 0.877 2.813 1.963 0.734 4.943

condition Proposed model 1.472 0.901 3.210 1.530 0.873 2.740 1.739 0.798 4.785

Markov order n = 7 n = 1 n = 2
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Fig. 5. Estimation result and error of normal GP model under one-
directional force condition (Z-axis)
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Fig. 6. Estimation results of each model
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Fig. 7. Performance considering multistep time series data model.

C. Three-directional force condition

In the previous experiments, we focused on the uniaxial
contact force applied to the fingertip. However, in actual
tasks such as grasping an object the exerted force includes
components of all directions. It is critical for the model
to simultaneously estimate the three-axis directional contact
force by using common taxel values. We tested our model
when the tactile sensor grip was handled as in drawing
a circle. As Fig. 4(b) illustrates, the applied force to the
fingertip has different period and intensity values in all axial
directions. Furthermore, taxel values did not synchronize
unlike the one-directional condition shown in Fig. 4(a).

The actual and output values of our model for each axis are
shown in Fig. 8. There is a small error between the actual and
estimated values; however, the estimation is almost accurate
in each direction.

Table I presents the accuracy of each model for each
direction. The Markov order with which the proposed model
exhibits the best accuracy is not the same because probably
of the different period in the three axes. Additionally, the
increase in the accuracy of our model compared to the normal
GP is smaller than the under the one-dimensional force
condition. This might be because the F/T sensor output has a
large variance for the same taxel signal in this experimental
datasets due to complex movements.



D. Cross learning condition

To allow robots to use our model to estimate task-relevant
information from unknown sensor signals, the model must
be trained by using datasets collected in advance. In previous
experiments, we divided the data, which were collected in a
single session for the learning and testing datasets. Here, we
tested our model by using the other session data for learning.
That is, the model was first trained with the dataset of the
three-directional force condition and then tested with that of
the one-dimensional force condition.

Fig. 9 shows the estimation results of our model. The error
is much larger than in the previous experimental results.
In particular, Fig. 9(c) shows a large estimation error in
the Z-direction. This is attributable to the difference in the
property for the learning and testing datasets. On one hand,
the datasets for the X- and Y-directions include periodic
patterns for both the learning and testing (see Figs. 4(b), 9(a)
and 9(b)). On the other hand, the dataset for the Z-direction
consists of a periodic force only in the testing but not in the
learning.

All results of this experiment are summarized in Table I.
Our model improves the force estimation accuracy under the
X- and Z-directional conditions compared to the normal GP
model as well as in the previous experiments. By contrast, the
normal GP model shows the best performance for RMSE and
CC under the Y-directional condition. We have to confirm
the relation between the Markov order n and the change of
performance to discuss this result.

V. DISCUSSION

The performance of our model, which considers the
Markov property of taxel values, is better than that of the
normal GP model, which does not take the Markov property
of taxel values into account for most experiments. It can
be suggested that the n-order Markov chain of input allows
the covariance function to represent n sets of the temporal
change of the tactile signals than the normal GP model.
However, the higher order Markov property does not always
perform well. The experimental results show that there is
an optimum Markov order n for each condition. In order to
investigate what determines the optimum n, we additionally
conducted an experiment, in which the frequency of a
periodic force was modified. Fig. 10 shows the RMSE for
three different force patterns: Type A is a periodic force with
0.46 Hz, B is with 1.18 Hz, and C with 1.71 Hz. The result
demonstrates that the RMSE exhibits a minimum value with
different n depending on the force pattern: n = 14 for Type
A, n = 3 for Type B, and n = 3 for Type C. It suggests that
the smaller the frequency of the input force is, the longer the
required Markov property is.

We then investigated what temporal dynamics of sensory
signals was represented in the GP model. To infer the internal
representation, we designed a comparative GP model, which
employed not only the history of sensory signals but also the
temporal difference of the signals ∆θt = θt − θt−1 as the
input. The input with an n-order Markov chain is thus given

Order of a Markov chain
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by

Θn
t = [θt, ∆θt,θt−1, · · · ,θt−n+1,∆θt−n+1,θt−n]

T . (7)

We expected that ∆θt might improve the accuracy of the
force estimation compared to our model. Table II presents
the accuracy of the two models under the one-directional
force condition (Z-axis). There is only a slight difference
between the models: the RMSE and the CC are better for
the comparative model whereas the AME is better for the
proposed model. One reason for this result is that a GP
has the ability to internally represent the difference infor-
mation of two consecutive sensory signals. Our model used
a squared exponential covariance function, which calculated
the distance between two input signals. In our experiment,
the distance corresponds to a temporal change in sensory
signals (i.e., ∆θt). This might be why our model could
achieve as good performance as the comparative model.
However, if we take the computational cost into account, our
model outperforms the comparative model. It is known that
O(D3) cost is required to compute the squared exponential
covariance function. Taken together, our model is reasonable
in terms of both the estimation accuracy and the computa-
tional cost. In the current experiment, the force estimation by
our model took 62.9 sec while the comparative model took
158.9 sec. Adding the difference value significantly increases
the amount of calculation.

VI. CONCLUSION

We proposed a model to compensate for the hysteresis
of flexible tactile sensors by using Gaussian process with
sensory Markov property. Our model was able to estimate
the force more accurately than the normal GP model. The
results of our experiments suggest that our model provides an
optimal compromise between computational efficiency and
model robustness. This model can additionally be applied
to various types of flexible tactile sensors, other than those
embodied on the iCub robot.
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Fig. 8. Estimation results of three-directional force condition
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Fig. 9. Estimation results of cross learning condition

TABLE II
PERFORMANCE OF PROPOSED AND COMPARISON MODELS

Model RMSE CC AME (N)
Proposed model (n = 3) 0.561 0.981 1.944
Comparison model (n = 3) 0.559 0.981 1.952

For future improvements, we wish to compare our model
with Gaussian process dynamical models [?]. Furthermore,
we plan to propose a model that represents hysteresis as
a latent state. Latent states are able to model contexts of
hysteresis considering the Markov chain of previous states
without multistep time series inputs. If proposed model is
able to represent hysteresis by using a latent state model, we
can reduce the computational cost due to the low dimensional
input.
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