Infant-caregiver interactions affect the early development of vocalization
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Abstract— Vocal communication is a unique means to bi-
laterally exchange messages in real-time. The developmental
origin of such communication is the vocal interactions between
an infant and a caregiver, and one of the big mysteries is
how the infant learns to vocalize the mother tongue of the
caregiver. Many theories claim to explain an infant’s capability
to imitate a caregiver based on acoustic matching. However,
the acoustic qualities of the infant and the caregiver are quite
different, and, therefore, cannot fully explain the imitation.
Instead, the interaction itself may have an important role, but
the mechanism is still unclear. In this article, we review studies
addressing this problem using constructive approaches based
on cognitive developmental robotics.

[. INTRODUCTION

A unique communication capability of the human species
is language because it provides a powerful economy of
reference for objects, events, and relationships, which other
species cannot achieve by alternate means of communication.
Therefore, from an evolutionary perspective, it is still a big
mystery as to how human beings acquired language [1].
Further, how infants and children learn to use language needs
to be understood from a developmental perspective. In this
article, we focus on vocal interactions between an infant and
a caregiver, and how the infant learns to vocalize the mother
tongue of the caregiver.

Computational modeling has been used to explain the
developmental process of speech perception and articulation.
Many theories claim to explain an infant’s capability to
imitate a caregiver based on acoustic matching. However,
the acoustic features of the infant and the caregiver are quite
different, and, therefore, cannot adequately explain imitation.
Instead, the interactions themselves have an important role

(2], [3]. [4], [5], [6].
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Fig. 1. Core ideas of CDR: physical embodiment and social interaction
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These studies are categorized as constructive approaches
based on cognitive developmental robotics (hereafter, CDR)
[71, [8]. The central paradigm of the constructivist ap-
proaches [9] is to obtain a new understanding through cycles
of hypothesis and verification, targeting the issues that are
very difficult or almost impossible to solve under existing
scientific paradigms. The core idea of CDR is “physical
embodiment,” and more importantly, “social interaction” that
enables information structuring through interactions with
other agents. Cognitive development is thought to connect
both seamlessly [10], [11] (Fig. 1).

Physical embodiment of the infant-like vocal system is
designed with capability of sensorimotor mapping [2], [3],
and social interaction with a caregiver has an important role
not only in teaching signals to the infant (robot), but also in
the entrainment mechanism of the infant’s vocalization into
that of the caregiver’s [4], [5], [6]. These studies reveal the
importance of a caregiver’s responses to an infant’s (robot’s)
actions, and the mutual feedback between them enables the
infant (robot) to vocalize the mother tongue of the caregiver.

The rest of this article is organized as follows. First,
the early development of infant speech perception and ar-
ticulation from observational studies in developmental psy-
chology is briefly reviewed. Next, computational modeling
approaches are briefly summarized. Then, the constructive
approaches with experiments using real robots and computer
simulations are discussed from an issue of how infant-
caregiver interactions affect the early development of vocal-
ization.

II. BEHAVIORAL STUDIES ON EARLY
DEVELOPMENT OF SPEECH PERCEPTION AND
ARTICULATION

In general, an infant’s ability to listen to adult voices
appears in a language-independent manner from birth and
gradually adapts to their mother tongue [12]. Kuhl et al.
[13] reported that infants younger than six-month-old can
discriminate vowels in any language, but gradually their
perception is tuned to their mother tongue, and, therefore,
they appear to lose the perceptual capability before they are
six-month-old.

In terms of developments that eventually lead to speech
production, an infant’s utterances are initially quasi-vocalic
sounds that resemble vowels and are gradually adapted to
his/her caregiver’s sounds [14].

In developmental psychology, it was claimed that the
infant-caregiver interaction plays an important role in vowel
acquisition [15]. From the first month after birth, a mother’s
speech to her infant differs from that of normal adult



speech, i.e., high in pitch, with many variations that are
more pronounced than those of normal speech. It is called
“motherese,” “infant-directed speech (IDS),” or “baby talks.”
Liu et al. [16] found that clarity of maternal speech directly
affects an infant’s early language learning based on the
measurement of speech discrimination in infants (6-8 and
10-12-month-olds).

III. MODELING APPROACHES TO VOCAL
COMMUNICATION

Computational modeling for vocal communication could
be classified into three categories as shown in Fig. 2:

1) No interaction: Motor control ability develops through
self-monitoring of vocalizations [17], [18], [19].

2) Caregiver’s scaffolding: Statistical estimation of a care-
giver’s vowel categories from the caregiver’s vocaliza-
tions [20], [21], [22], [23], [24], [25], [26].

3) Mutual interaction: Self-organization (one of the most
popular unsupervised learning method for clustering
data without knowing the class memberships of the
input data) of shared vowels through imitative interac-
tion [27], [28].

2) Caregiver's scaffolding:
Statistical estimation of
caregiver’s vowel categories from
caregiver's vocalizations [20-26]

3) Mutual interaction: Self-
organization of shared vowels
through imitative interaction [27,28]

3¢ controk ability develops
_ through self-monitoring of
~ vocalizations [17-19]

interactions [2-6]

Fig. 2. Modeling approaches for vocal communication (adapted from [29])

There have been many other computational models of
speech development, and Rasanen [30] thoroughly reviewed
them in addition to the models described above. These
models assumed that acoustic matching is an unproblematic
mechanism for learning to pronounce speech sounds. Some
models also ignored or downplayed the correspondence
problem that arises from the different sizes of adult and
infant vocal tracts [31] and the inevitable differences in sound
qualities that result [6].

IV. MODELING WHOLE DYNAMICS OF VOCAL
INTERACTIONS

In order to address the issue of finding correspondence,
the whole dynamics of vocal interaction between an infant
and a caregiver should be considered, which is indicated
as a large broken ellipse in Fig. 2. The key idea is a
caregiver’s affirmative bias, i.e., the caregiver’s anticipations
for her infant can bias her perception and imitation as well.
Moreover, Rochat [32] claimed that a caregiver’s affirmative
interpretation and imitation of infant’s immature behavior

develop infant’s social abilities. Here, we introduce several
attempts in this category.
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Fig. 3. An overview of the system: “Burpy”

Yoshikawa et al. [2] have addressed this issue in human-
robot vocal interaction and demonstrated the importance of
being imitated by a human caregiver, whose body is different
from that of the robot’s, as well as subjective criteria of the
robot such as ease of articulation. Fig. 3 shows a vocal robot
called “Burpy” which consists of an articulation part and an
auditory one with their corresponding layers. Both layers are
self-organized and connected by Hebbian learning through
parrot-like teaching by a caregiver.

‘‘‘‘‘

Fig. 4. Different learning results under several conditions. Apexes of red
pentagons represent target vowels of infant, in other words, clearest vowels
in the infant’s vowel region, and black dots represent the infant vowel
prototypes after learning. (a) Both biasing elements; (b) only automirroring
bias; (c) only sensorimotor magnets; (d) no biasing elements. (adapted from

(4D

Ishihara et al. [4] modeled the mechanism of imitation un-
derlying caregiver-infant interaction by focusing on potential
roles of the caregiver’s imitation in guiding an infant’s vowel
development. Two kinds of the caregiver’s possible biases
are used. The first one represents a caregiver’s sensorimotor
bias such as perceptual magnet effect [33], and the second
is based on what we call “automirroring bias,” by which the
heard vowel is much closer to the expected vowel because
of the anticipation of being imitated. The results are shown
in Fig. 4 indicating how these two biases worked.

Howard and Messum [6] addressed the issue using Elija,
a computational model of an infant. First, through unsu-
pervised active learning, Elija began by discovering motor
patterns, which produced sounds. Next, native speakers of
English, French and German played the role of Elija’s
caregiver, and Elija memorized the caregiver’s responses



and reacted to the memorized patterns. This interaction was
expanded to word teaching.

V. DISCUSSION

According to the developmental process of speech per-
ception and articulation, we discuss the following issues
pertaining to the above studies of whole dynamics [2], [3],

[4]. [5]. [6].

A. Self-learning at early stage

Infant-caregiver interactions start from the beginning, ob-
served as motherese or infant-directed speech. However,
infants tend to be affected by their caregivers/ mother tongues
after 6 or 8 months. This period could be a mixture between
self-learning and interaction with the caregiver because it is
not plausible that infants are born with speech perception
and articulation skills. For the constructive approaches, two
styles are observed.

1) Separation of self-learning from interaction: Elija [6]
took this type of learning for the convenience of computation
and to make clear the roles of different learning schemes.
Several properties such as salience/diversity (selected by the
caregiver in [5]) and effort (“toil” in [2]) were used.

2) No self-learning process: Miura et al. [5] focused on
the process of selection and correspondence of the vowels
with initially fixed motor patterns without the self-learning
process. Their method is same as Elija’s process after the
self-learning because the learned (Elija) or initially fixed
motor patterns (Miura’s) do not change during the interaction
process with the caregiver. In contrast, Burpy [2] took an
interaction process from the beginning without the self-
learning process.

B. Affirmative bias of caregivers

Howard and Messum [6] analyzed the interactions through
phonemic transcriptions of the caregivers’ utterances and
found that the caregivers interpreted Elija’s output within
the framework of their native languages. Ishihara et al. [4]
formalized such caregiver’s affirmative biases as “sensorimo-
tor magnets” and “automirroring bias” by which the heard
vowel is much closer to the expected vowel because of the
anticipation of being imitated (Fig. 4).

Computer simulated results of the caregiver-infant inter-
action showed the sensorimotor magnets help form small
clusters and the automirroring bias shapes these clusters to
become clearer vowels in association with the sensorimotor
magnets.

C. Strategies of learners

Burpy (Fig. 3) [2] has slightly modified Hebbian learning
so that the size of the final cluster could be small by in-
troducing the criterion of “toil” parameter (less deformation
and less energy consumption) mentioned above. After the
learning process, this association plays the role of a mirror
neuron system (MNS) for Burpy to remind its articulation
vector when it hears one of the caregiver’s vowels.

Ishihara et al. [4] represented the learner’s vowel primi-
tives as a Gaussian mixture network (GMN), and its param-
eters changed during the interactions with a caregiver, which
indicates the developmental process of finding the correspon-
dence of vowels between the learner and the caregiver.

In these two studies, the caregivers are assumed to be
ideal imitators who always respond to the learner’s utterance
with their own corresponding vowel. However, in reality,
caregiver’s imitation is less than 20% in the interaction
between mothers and their 7- to 10-month-old infants [34].

Howard and Messum [6] reported that the caregivers’
(four English, two German, and two French) responses were
almost reformulation (more than 90%) and contained little
mimicry (less than 10%). Therefore, Elija has a strategy to
memorize the responded patterns from the caregiver, and
responds with the most similar pattern. Through many cycles
of such feedback, Elija is expected to statistically converge its
responses and to consolidate its memory patterns to respond
appropriately.

Based on the data by [34], Miura et al. [5] adopted a
learning method based on the automirroring bias on the
learner’s side with a self-evaluation mechanism to find
the correspondence with less frequent imitative caregivers.
The automirroring bias is the robot’s anticipation of being
imitated by its caregiver, and has a role of narrowing the
candidates for the correspondence.

D. Research platforms

Physical embodiment is one of the core ideas of cogni-
tive developmental robotics [7], and in the case of vocal
interaction, it corresponds to two types: physical articulation
systems and virtual ones. Both are important parts of all
systems mentioned above.
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Fig. 5. Lingua [left] and its formant frequencies [right](adapted from [36])

Vocalization is generally well known as an outcome from
a modulation of a source of sound energy by a filter function
determined by the shape of the vocal tract; this is often
referred to as the “source-filter theory of speech production”
[35]. Yoshikawa et al. [2] implemented this theory into Burpy
by using a vibrator as a sound source and silicon rubber tube
as a vocal tract whose shape is deformed by five electric
motors. Miura et al. [3] improved Burpy by replacing the
sound source with an air compressor and an artificial vocal
band, and added a lip at the front end of the vocal tract. The
length of the robot’s vocal tract changed from 170 [mm]
(average vocal tract length of the human male) to 116 [mm].



Endo et al. [36] developed an infant-like vocal robot,
“Lingua,” as a controllable vocal platform that affords a
model of real infant vocalization. The results of the pre-
liminary experiments showed that the robot could vocalize
almost the same ranges of fundamental frequencies and
vowel-like utterances as an infant. Lingua needs additional
improvements and will be used for experiments of interaction
with human caregivers (Fig. 5).

Recent progress in articulation simulator in terms of
anatomical structure, function, and motor control is striking
(e.g., [37]). Elija’s motor control system [6] incorporates
a Maeda articulatory speech synthesizer [38], [39]. It was
supposed that the articulation simulators were not good at
real-time response to human subjects. Elija has partially
solved this issue by separating the self-learning process off-
line, and selecting one of the fixed motor patterns during the
real-time interactions.
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