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1. Introduction

In early infancy, humans are not yet able to detect

the goal of others’ actions. Later on, infants undergo

a developmental process that allows them to perceive

others’ actions as goal-directed. Several studies have

been carried out to reveal when and how infants start

understanding goal-directed actions. Woodward [1]

and Sommerville et al. [2] reported that young in-

fants with goal-directed action experience showed a

stronger novelty response to test events that varied

the goal of the actions than test events that varied the

motion path of the actions (e.g., the motion path). In

contrast, infants did not show differentiated responses

between both test events when the action was not rec-

ognized as goal-directed. This constitutes evidence

that goal-directed action execution alters the percep-

tion of similar actions performed by other individuals.

In this study we build a computational model to

clarify the underlying mechanism that accounts for

the influence of the action production on the percep-

tual system. We argue that experience of action pro-

duction enables infants to detect the goal in others’

actions. Further, we want to explain the connection of

this mechanism to the visual attention, in accordance

to [2] where infants’ experience of action production

produced changes in their visual attention.

2. Hypothesis

Sommerville et al. [2] reported that infants’ ac-

tion experience alters their perception when observing

others’ actions. Specifically, experience apprehending

objects initially increased infants’ attention to similar

reaching events performed by another person (Fig-

ure 2 in [2]), and increased more attention to events

changing the action goal(Figure 3 in [2]).

We argue that when infants observe others’ actions

they make predictions of others based on the sensory

information they perceive (Fig. 1-a). On the other

hand, when infants produce actions they acquire own

action experience through the process of integrating

motor and sensory information. In our hypothesis in-

fants use the joint representation from that sensorimo-

tor integration to predict others’ actions (Fig. 1-b).

In other words, both action perception and action pro-

duction share a common predictor, which we consider

accounts for the influence that action production has

on action perception. Further, we claim that the mo-

tor information contains a representation of the action

Fig.1 Our hypothesis. (a) During the action observa-
tion infants receive sensory information and pre-
dict sensory information. (b) During the action
observation infants receive sensory and motor in-
formation and predict sensory and motor infor-
mation.

Fig.2 Visual attention. Curve of interest value in
function of the prediction error.

goal [4]. Based on this argumentation, we hypothe-

size that the motor information alters the sensorimo-

tor representation in terms of the goal, which allows

infants to detect the goal in others’ actions.

During this learning process a prediction error

arises between the predicted sensory information and

the actual one [3]. The magnitude of the prediction

error depends on the action experience. Here, we hy-

pothesize that the prediction error modulates the level

of attention to external stimulus through an interest

function shown in Fig. 2 [5].

3. Computational Model

We propose a computational model based on our

hypothesis which consists of four modules: the visual

module, the motor module, the sensorimotor integra-

tion, and the visual attention module.



3.1 Motor Module

The motor module generates:

1. the motor primitives P = [p1 , ..., pm ] represented

as a vector ofm binary signals whose components

take values 0 or 1, where m is the number of

action primitives,

2. and the target of the ongoing action G =

[g1 , ..., gn ] as a vector of n binary and mutually

exclusive signals whose components take values 0

or 1, where n is the number of objects.

For the case of two objects (n=2) and two motor prim-

itives (m=2): arm reaching primitive and arm retract-

ing primitive, the motor module will output a vector

M composed of four activation signals,

M(t) = [g1(t), g2(t), p1(t), p2(t)], (1)

where t represents the time. The choice of variables

is based on the idea that infants’ actions are goal-

directed (see goal babbling theory [6]).

3.2 Vision Module

Here, we introduce the term relations which refer

to the relative dynamic between objects and the mov-

ing effector. For example the moving effector getting

closer to (or getting away from) an object is consid-

ered a relation. The visual module receives an input

image and outputs:

1. the position (x, y, z) of the moving effector,

2. the matrix R = [r11 , ..., r1m ; r21 ..., r2m ; ...; rn1 ...,

rnm ] of n×m possible combinations between the

moving effector and n objects for m relations,

whose components take values 0 or 1,

3. and the vector S = [s1 , ..., sm ] of m possible rela-

tions between the moving effector and any object

(e.g., the relation getting closer takes value 1 if

the moving effector is getting closer to any ob-

ject), whose components take values 0 or 1.

This choice is justified by the fact that infants can

be expected to distinguish between objects and actors

(see [1]), and therefore to be potentially able to recog-

nize dynamic relations between them. Note that the

vector S guarantees a differentiated representation of

the dynamic of the moving effector regardless of the

identity of the targeted object.

Thus, for the case of two objects (n=2) and two

relations (m=2), getting closer and getting away, the

vision module will output a vector V made of nine

signals,

V(t) = [x (t), y(t), z (t), r11 (t), r12 (t),

r21 (t), r22 (t), s1 (t), s2 (t)],
(2)

3.3 Sensorimotor Integration Module

3.3.1 Sensorimotor Integration

Here, we take advantage of the structure and func-

tionality of the Elman Recurrent Neural Network

(RNN) [7]. The inputs of the neural network I(t) are

the outputs from the visual module and the motor

module. We used 13 neurons in the input and out-

put units, and 50 neurons in the hidden and context

units, which was empirically decided as the minimum

number of neurons for the network to converge.

I(t) = [V(t),M(t)], (3)

and the outputs O(t) are the predicted visual and

motor data,

O(t+ 1) = [Vp(t+ 1),Mp(t+ 1)], (4)

where Vp(t + 1) is the predicted visual information,

and Mp(t + 1) is the predicted motor information.

The internal composition of Vp(t+1) and Mp(t+1)

is equivalent to V(t) and M(t), respectively. The

neural network is trained using the back propagation

through time method to minimize the learning error

of visual and motor data.

3.3.2 Prediction Error

The prediction error u(t+1) when observing others

performing an action is calculated as,

u(t + 1 ) = |Vp(t+ 1)−V(t+ 1)|, (5)

where Vp(t + 1) is the predicted sensory data, and

V(t+ 1) is the actual sensory data.

3.4 Visual Attention Module

We adopted the findings of Kidd et al. [8] who

suggested that infants allocate their attention in or-

der to maintain an intermediate level of complexity.

Here the complexity is represented by the prediction

error. Accordingly, the visual attention is assumed to

be proportional to an interest value q (Fig. 2). The

interest value q is defined as follows,

q(t) =
1

σ · √2 · π · e−(u−w)2

2·σ2 (6)

where α is a scaling factor, σ is the variance and w

is the intermediate value of the prediction error, re-

spectively. The interest function is maximized when

the prediction error is moderate, that is, when the

observed action is not too predictable (i.e., prediction

error is low) or not too unpredictable (i.e., prediction

error is high).

4. Experiments
4.1 Experimental settings

We reproduced similar experimental settings to

those described in [2]. Our experiment procedure

is summarized in Fig. 3. We conducted experi-

ments with the simulated version of the humanoid

robot iCub. The experiments considered two scenar-

ios: the watch-first and the reach-first condition. For

each experiment, the robot was placed 40 centimeters

away of two objects, separated from each other by



Fig.3 Procedure of the experiment

another 40 centimeters. In the watch-first scenario,

the system first observed another individual reaching

for one of the objects from the same location (per-

spective) as the robot, as in [1] [2]. This phase is

called the visual habituation. Then, the position of

the objects was swapped and the system observed two

more actions: reaching for the other object (new goal

event) and reaching for the same object (new path

event). In the reach-first scenario, the same process

was repeated, but this time the system previously

experienced reaching for both objects in the action

task, before the visual habituation. The three exper-

iments (action task, habituation and new event) were

repeated 20 times with random initialization of the

weights of the neural network.

4.2 Action Task

During the action task, the robot’s arm moved to-

ward and touched one of two objects, then came back

to the initial position and repeated the same action

for the same or the other object, randomly. During

the action task, the neural network was trained with

vision and motor data for 500 reaching actions, each

one composed of 175 steps (i.e., 87500 action steps).

Fig. 4 (a) depicts the mean error of the action task

over all training trials. The mean error um was calcu-

lated as the average of the prediction errors in a time

window of size of 50 steps (chosen empirically) in or-

der to attenuate the noise due to the dynamic of the

reaching actions, which is not the target of our study.

4.3 Visual Habituation

The neural network was the same as the one trained

during the action task for the reach-first condition.

The motor inputs were fixed to 0 and the back-

propagation was disabled for both the motor inputs

and outputs so that the network does not unlearn the

previously acquired motor prediction abilities (in the

reach-first condition). During the habituation, the

neural network was trained with only the vision for

500 reaching actions, each one composed of 175 steps.

Fig. 4 shows the experimental results. Here, the max-

imum prediction error value was 0.365 (in watch-first

condition), and the intermediate error w (Eq. 6) used

for the interest function q was defined as half of the

maximum prediction error. Hereafter the intermedi-

Fig.4 The bottom horizontal axis represents the ac-
tion step, the vertical axis represents the mean
error and the top horizontal axis represents the
interest value. The blue line is the mean error
in function of the action step and the gray line
is the interest value in function of the mean er-
ror (see Eq. 6), respectively. The red line and
the red point represent the intersection of the
mean error with the curve of interest. (a) Ac-
tion task for reach-first; (b) Habituation task for
reach-first; (c) Habituation task for watch-first

ate error stands as a reference value in our discussion

regarding visual attention. The variance σ (Eq. 6)

was arbitrarily defined to be 0.7 for illustration pur-

poses since it does not alter the relation between high

and low errors u and high and low interest q .

We can observe from Fig. 4 (b) and (c) that the er-

ror for the reach-first condition was significantly lower

than the error in the watch-first condition. Fig. 4

shows that the interest value (grey line) for the reach-

first condition was higher than the interest value for

the watch-first condition. This result suggests that

own visuomotor experience contributes to make oth-

ers’ actions more predictable. Although, since othersf

actions are not yet fully predictable, the prediction er-

ror that arises from observing others’ actions causes

a change in the visual attention.

4.4 New Path and New Goal

Here we measured the mean error when the goal

or the trajectory were changed after the habituation,

namely new goal and new path event, respectively.

During the new path and new goal tests, the neural

network was tested with the vision for 4 reaching ac-

tions for each test condition. The graphs of the mean

error and the interest value for watch-first condition

and reach-first condition are shown in Fig. 5.

We can see that the prediction error was higher

for new goal event than for new path event for both



Fig.5 The bottom horizontal axis represents the con-
dition, the vertical axis represents the mean error
and the top horizontal axis represents the inter-
est function. The green and blue bars represent
the mean error for the reach-first condition and
the watch-first condition, respectively. The gray
line, whose independent axis is the top horizon-
tal axis, represents the interest value in function
of the mean error. The red line and point repre-
sent the intersection of the mean error with the
curve of interest. (a) New goal event, (b) New
path event.

the system with action experience (i.e., the reach-first

condition) and the system without motor experience

(i.e., the watch-first condition). We must notice that

depending on the assignment of the visual signals the

error could become higher for new goal and lower for

new path condition, or vice versa. Thus, here we

consider the difference of the error between new path

and new goal as reference. Then, we can see in Fig.

5 that the difference in error between new goal and

new path was higher for watch-first condition than for

new goal condition. It means that in the reach-first

condition the experience of motor signals and visual

signals encoded in the visuomotor representation of

the system was used to predict other’s actions. Re-

garding the goal detection, the results revealed that

due to the lack of visual experience of the system in

the watch-first condition, it is not possible to make a

comparison between reach-first and watch-first condi-

tions, and therefore the results are not yet conclusive

about whether the system detected the action goal.

5. Discussion

Our experimental results in terms of patterns of

prediction error demonstrated a clear influence of the

action experience on the perception. The predictor

acquired through visuomotor experience of own ac-

tions was used to predict visual information of others’

actions. Here we employed a Gaussian-shaped curve

and the middle value of the prediction error to es-

tablish a relation between prediction error and visual

attention, and the experimental results demonstrated

to be in favor of our selection. Nonetheless, we con-

sider that tuning those parameters, including σ (Eq.

6), requires additional evidence from future psycho-

logical studies.

We must say that our results are not conclusive

regarding the detection of action goals. Our exper-

iments reproduced similar experimental settings to

those in [2], but the experiments indicated that it is

necessary to distinguish between the influence of the

motor and the visual information when comparing the

reach-first and the watch-first conditions. Thus, fur-

ther experiments must be carried out allowing the sys-

tem in the watch-first condition to acquire the visual

component of action experience in the first experiment

(i.e., before the habituation phase). This setting will

allow to make comparisons between reach-first and

watch-first conditions, and therefore to measure the

influence of the motor experience on goal detection.

6. Conclusion
We proposed a computational model to explain

findings showing that action production alters the

perception of other’s actions in infants [2]. Our re-

sults demonstrated that the sensorimotor integration

of own actions led to distinctive patterns of predic-

tion error depending on own action experience that

altered perception of others’ actions
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