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Abstract—1t is assumed that emotion recognition and gener-
ation share the same internal model. People interpret emotional
expressions of a partner based on their internal emotion model,
whereas the model enables people to express their emotional
states. Despite the close link between generation and recognition
of emotions, there has been little computational models to
take the link into account. This paper presents a multimodal
Restricted Boltzmann machines (RBMs), which is able to
both generate and recognize emotional states. An RBM has
a capability to abstract and then reconstruct input signals. By
hierarchically integrating RBMs for multiple sensory modalities
(e.g., vision, audio, and tactile), our model represents emotional
states as the activations of the units at the higher layer.
Our preliminary experiments demonstrate that the model can
generate emotional expressions similar to those presented by
an interaction partner like mirroring. Additionally, the model
can infer the pater’s emotion from deficient modality inputs
through the recognition and regeneration process. We discuss
the advantage of our emotion recognition-generation model in
relation to the mirror neuron system.

I. INTRODUCTION

Emotion has important rolls for many cognitive functions
(e.g., decision making and communication etc.). In social
contexts, people perceive others’ emotional states from facial
expressions and vocalizations and share their emotional states
by multimodal expressions. Humans’ internal states which
are base of emotion are very complex. They are influenced
by external and internal changes of one’s body. However, we
are able to share generalized emotional categories as typified
by happiness, anger, and so on with each other.

A circumflex model [1] is one of the low dimen-
sional model which can represent emotional states. This
model shows that our emotional categories are abstracted in
two dimensional space defined by pleasure/unpleasure and
arousal/sleep axes. If communication robots learn the cate-
gorical model like the circumplex model, they can interpret
emotional state of a partner and express emotional states in
social situations

This paper presents emotion recognition-generation model
in interactions. We assume that emotion recognition and
generation processes share the same internal model. Our
proposed model, is constructed of restricted Boltzmann ma-
chines (RBMs) acquires representations of multimodal emo-
tional signals. Experimental results show that the proposed
model is able to both recognize and to generate emotional
expressions from multimodal interaction data. Finally, we

T. Horii, Y. Nagai and M. Asada are with the Graduate School
of Engineering Osaka University 2-1 Yamada-oka, Suita, Osaka, Japan
takato.horii@ams.eng.osaka-u.ac. jp

Recognition and generation module

Inputs from Outputs as robots
partners Pleasure / Unpleasure expressions
oo o()|Higher layer I:>

i [‘ooog‘j] [‘ooo‘] [?ooog‘)] = @)
L (Go000) [Oe0ol) [Oeoo) %‘,
s Tactile Auditory Visual [::>

Fig. 1. Overview of interaction and proposed model
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Fig. 2. Example of multimodal emotional sensory inputs

discuss the relationship between our model and the mirror
neuron system.

II. PROBLEM SETTING AND PROPOSED MODEL

We focused on a face-to-face interaction between a human
and a pater robot as shown in Fig. 1. The robot receives
multiple sensory inputs as tactile, auditory, and visual infor-
mation like Fig. 2.

We proposed an emotion recognition-generation model
based on an emotional differentiation model which is pro-
posed in [2]. This model is composed of restricted Boltz-
mann machines (RBMs) [3], is a type of stochastic neural
networks. Horii et al. [2] used Gaussian-Bernoulli RBMs
whose variance of Gaussian distribution of input node fixed
1.0 for each sensory module. We apply a method of Cho et
al. [4] to update variances of each input node. See [2] for
the details about network structures.

The advantage of our model from other emotional recog-
nition models is that our model is a generative model. The
generative model estimates a data distribution of inputs. The
proposed model is able to abstract emotional states in a
higher layer from multiple sensory inputs of interaction and
recognize emotional states of each data as well as other
recognition models. Additionally, this model can replenish a
deficient input data through the network and generate sensory
information from abstracted data.



TABLE I
RMSE BETWEEN INPUT AND RECONSTRUCTED DATA

Experimental condition RMSE
Using complete multimodal inputs 1.37
Using deficient inputs (w/o visual) 2.36

(a) From complete
inputs

(b) From deficient
inputs

Fig. 3. Reconstructed data

III. EXPERIMENT AND RESULTS

We evaluated the proposed model using the multimodal
interaction dataset as shown in Fig. 2. The dataset includes
6 basic emotions (i.e., joy, surprise, anger, fear, sadness,
and disgust) and neutral states stimuli. It is assumed that
multimodal inputs does not conflict with each modality in
these experiments. After training by the dataset, we use the
same model for each experiment.

A. Reconstruction from complete multimodal inputs

The first experiment has been performed to validate a
basic ability of the proposed model. We inputted a set of
multimodal stimuli for the proposed model to reconstruct
sensory data through higher layer. The proposed model
sampled activations from lower layers to higher layers se-
quentially by using input data. After a forward sampling,
the model resampled data in the opposite direction. Fig.
3(a) shows the reconstructed data of the visual modality
from the angry stimuli (Fig. 2). The root mean squared
error (RMSE) between the visual input and the reconstructed
data is summarized in Table I. According to Fig. 3(a), the
proposed model is able to reconstruct a same emotional
expression as well as inputs.

B. Emotion recognition and generation from deficient inputs

The second experiment has been carried out to investigate
the advantage of this model that the model can replenish
a deficient input through the forward-backward sampling.
We inputted multimodal stimuli except a visual input from
Fig. 2 and sampled a reconstructed visual data by using a
Gibbs sampling method in 10000 steps. Fig. 3(b) depicts
the reconstructed data of the visual modality at step =
10000. According to Fig. 3(b), the proposed model can
imagine the deficient modality data from other modality
inputs. The estimation accuracy is lower than the previous
experiment. The dataset includes same auditory and tactile
signal combination with different visual stimuli. It has an
influence on the dispersion of reconstructions.

We illustrates the transition of sampled activations in
higher layer at each 10 step from O to 100 steps in the
principal component (PC) space of outputs in Fig. 4. The
each emotional state of the learning dataset distribute like
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Fig. 4. Transition of recognitions at each 10 step in PC space.

the circumplex model. This figure shows that the model
recognized the deficient input as the surprise signal at
first recognition process. However, through the sampling
method with reconstructed data, the estimated emotional
state changed into the anger which is the correct state.

From the above results, we could confirm that the proposed
model has advantages which is discussed in section 2. Robots
can recognize partners’ emotional states and generate emo-
tional expressions by using our model with action modules
which converts outputs into robot action.

IV. CONCLUSION

We discuss the relation between our emotion recognition-
generation model and the mirror neuron systems (MNSs) and
the mentalizing systems [5]. The result of first experiment
shows that our model can mirror the expressions through
the abstracted activations like the MNSs. This model au-
tomatically mimics others’ expressions and emotional states,
similar to the emotional contagion. It is clear from the second
result that the model can infer the deficient data and update
the belief of others’ emotional state sequentially through
the sampling. This behavior suggests that the reconstruction
process relates the MNSs and the estimation process through
the sampling relates the mentalizing systems.

For future improvements, we extend the model with action
modules by using reconstructed data for real-time human
robot interactions. In addition, we verify the detail of relation
to the MNSs and the mentalizing systems.
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