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Abstract— Inspired by cognitive and psychological studies,
many computational models have been proposed for enabling
robots to learn and develop like human infants. Sensorimotor
contingencies have been suggested to play a key role in cognitive
development in both humans and robots. However, there are
a variety of contingency models designed for specific tasks
and scenarios, yet no unified architecture has been presented
that can produce continuous development or account for the
link between different levels of cognitive abilities. We suggest
that predictive learning of sensorimotor information is a core
mechanism for learning contingencies and thus enables infants
and robots to acquire various types of cognitive functions such
as self-other detection, goal-directed action, helping behavior,
etc. This paper first presents a theory for cognitive development
based on predictive learning and gives three examples of robot
experiments to support it. We then extend the theory to discuss
a potential underlying mechanism of developmental disorders.
This theory suggests that difficulties in social interaction in
autism spectrum disorder might be caused by a different
tolerance for prediction error from that of typically developing
people.

I. INTRODUCTION

A promising approach for designing cognitive mechanisms
for robots is learning from human cognition. Researchers
can especially gain insights into the principle of human
intelligence by investigating the developmental mechanisms
of infants. Among the various theories about infant devel-
opment, contingency learning has recently attracted a great
amount of attention from researchers [1], [2]. Contingency
is defined as the co-occurrence of two consecutive states
or the triadic relationship between the states and an action
that produces the state change. Many behavioral studies have
shown that infants are sensitive to contingencies and exploit
them to effectively interact with the environment [3], [4].

Inspired by developmental studies, robotics researchers
have proposed various types of computational models for
robot development [5]–[7]. Object manipulation [8], self-
other detection [9], [10], imitation [11], and joint atten-
tion [12]–[14] have been achieved in robots by employing
contingency learning. However, despite successful results
in the above studies, no unified model has been presented
to account for the underlying mechanism for continuous
development. It is supposed that infants are endowed with
limited innate capabilities yet can acquire various types
and levels of cognitive functions by applying their inherent
abilities to multiple modalities, tasks, and situations. Previous
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Fig. 1. A basic architecture of predictive learning of sensorimotor
information. The predictor learns to predict sensorimotor signals (ŝi(t+1)
and âj(t+1)) at time t+1 based on the current signals (si(t) and aj(t))
at t. The actual sensory feedback si(t+1) obtained from the sensorimotor
system at t + 1 is used as a reference to calculate the prediction error:
ei(t + 1) = si(t + 1) − ŝi(t + 1). The goal of predictive learning is to
minimize ei(t+ 1).

computational models, in contrast, focused on specific tasks
and scenarios; thus, the scalability of these models is difficult
to assess.

We propose a theory for cognitive development based on
predictive learning of sensorimotor information. Predictive
learning is defined as a process to minimize a prediction
error, which is calculated as the difference between an actual
sensory feedback and a predicted one. For example, infants
come to be able to differentiate themselves from others
and to intentionally control their own bodies by updating
their internal model though the minimization of a prediction
error. Minimizing an error caused by the observation of
others’ actions leads to social behaviors such as imitation
and helping actions. This paper presents a theory based
on predictive learning and shows how robots can acquire
different levels of cognitive functions through sensorimotor
predictive learning. The theory is further extended to explain
an underlying mechanism of autism spectrum disorder. We
suggest that atypical tolerance for a prediction error might
be a cause of their social difficulties.

II. A THEORY FOR COGNITIVE DEVELOPMENT
BASED ON PREDICTIVE LEARNING

A. Basic Architecture of Predictive Learning

It has been suggested that the human brain creates an
internal model of the world [15]. Through interaction with
the environment, humans learn to acquire an internal model
based on sensorimotor experiences to control their own
body and to simulate the dynamics of the environment.
Recent studies in neuroscience further revealed that the

Proceedings of the IROS 2015 Workshop on 
Sensorimotor Contingencies for Robotics 
October 2, 2015



Fig. 2. Cognitive development in human infants (top) and predictive learning as an underlying mechanism for development (bottom). The first phase
of predictive learning ((a) at the bottom) is an update of the predictor through minimizing the prediction error ei(t+ 1), which is mainly caused by the
immaturity of infants’ own actions. This process allows infants to acquire the abilities of self-other cognition, goal-directed action, etc. The second phase
((b) at the bottom) is the execution of the motor command âj(t+ 1) produced by the predictor to minimize ei(t+ 1). In this phase, ei(t+ 1) is mainly
caused by the weak predictability of others’ actions; therefore, minimizing it leads to social behaviors such as imitation and helping actions.

internal model represents information in a predictive manner
[16], [17]. Predictive coding of sensorimotor signals enables
humans to effectively react to the environment.

Figure 1 illustrates a basic architecture for predictive
learning that is modified from [18]. The architecture consists
of two modules: The first one (bottom) is the sensorimotor
system (i.e., the body), which produces the sensory feedback
si(t+ 1) of target i at time t+ 1 in response to the current
sensory state si(t) and the motor command aj(t) at t. The
target i can be any entity (e.g., one’s own body, other
individuals, and objects in the environment) perceived by
sensory systems such as vision, audio, tactile, and somatic
senses. The second module (top) is the predictor (i.e., the
internal model of the body), which receives si(t) and the
efferent copy of aj(t), and then predicts both the sensory
state ŝi(t + 1) and the motor command âj(t + 1) at t + 1.
Unlike traditional theories of predictive coding [16]–[18],
this architecture supposes that the predictor predicts not only
sensory states but also motor signals, which are employed to
properly react to the environment. The goal of predictive
learning is to minimize the prediction error ei(t+1), which
is calculated as the difference between si(t+1) and ŝi(t+1):

ei(t+ 1) = si(t+ 1)− ŝi(t+ 1). (1)

B. Cognitive Development through Predictive Learning

We propose a theory for cognitive development based on
predictive learning. Figure 2 represents cognitive behaviors
infants acquire in the first few years of life (top) and the
architecture of predictive learning as the underlying mecha-
nism for development (bottom). There are mainly two phases
in predictive learning ((a) and (b) at the bottom of Fig. 2),
which are associated with different cognitive functions (note
that the two phases are interlinked during development):

1) Updating the predictor to minimize self-produced pre-
diction error: The first phase is an update of the predictor
through the sensorimotor experiences of infants’ own actions
(see Fig. 2 (a)). Infants are born with an immature predictor
that does not allow them to know where to detect their
own body or how to control it. For example, young infants
often gaze at their hands and feet, and put them into their
mouth in order to obtain multimodal perceptions of their
body. Such experiences allow them to learn the internal
model of their body (i.e., body image [19]) by minimizing
the prediction error ei(t + 1). This process also leads to
the development of self-other cognition [20]. One’s own
body is recognized as a perfectly predictable target after
acquiring the body image, whereas the bodies of other
individuals are recognized as weakly predictable—but not
unpredictable owing to social relationship—targets. Thus,
infants become able to differentiate themselves from others,
and social partners from non-social objects by comparing
their predictabilities.

Goal-directed actions such as reaching and grasping an
object are also acquired by updating the predictor. Neonates
seem to not yet have intentions or desired goals; thus, they
only produce reflexes or seemingly random motions (i.e., so
called body babbling). Once they accidentally produce an
interesting outcome during their movement, they target it as
a goal of their actions and try to reproduce it by repeating
the movement [21]. This behavior becomes more intentional
and accurate through the improvement of the predictor.

2) Executing an action to minimize other-related predic-
tion error: The second phase of predictive learning is the
execution of the motor command âj(t+1) produced by the
predictor in order to minimize the prediction error ei(t+ 1)
(see Fig. 2 (b)). The predictor is employed not only when



executing infants’ own actions but also when observing oth-
ers’ actions; however, infants do not necessarily differentiate
them. If the predictor is still too immature to differentiate
themselves from others, infants perceive actions presented
by others as if the actions were their own. Such assimilation
of one’s self and others (correspondence between them in the
later stage) enables infants to recognize others’ actions and to
predict the goal of the actions based on their internal model.
Of particular interest here is that the predictor behaves like
a mirror neuron or mirror neuron system [22], [23]. As the
predictor learns to associatively predict sensorimotor signals,
the observation of others’ actions si(t) induces not only the
next sensory state ŝi(t+1) but also the corresponding motor
command âj(t+ 1) like the activation of mirror neurons.

Executing âj(t + 1) then leads to the emergence of
social behaviors such as imitation and helping actions. As
mentioned before, actions generated by other individuals
are not perfectly predictable and thus produce a certain
level of prediction error even after updating the predictor.
This prediction error ei(t + 1) triggers the execution of the
predicted action âj(t+ 1) to minimize ei(t+ 1). Imitation,
for example, is achieved by generating âj(t + 1) as a
motor output while other individuals are still performing the
actions. Helping behaviors, which seem to require higher
cognitive capabilities, can be also generated by the same
mechanism. If others fail in achieving actions or take a longer
time to perform them, infants detect a large prediction error
ei(t + 1) that motivates the infants to execute âj(t + 1) in
order to minimize ei(t + 1). This resultant behavior looks
as if infants help others though they may not have such an
intention. This theory suggests that infants’ social behaviors
might originate from non-social motivation (i.e., minimizing
the prediction error) rather than from social motivation.

III. CASE STUDIES OF ROBOT DEVELOPMENT BASED ON
PREDICTIVE LEARNING

This section presents previous robotic experiments to
support this theory: self-other cognition and goal-directed
action are given as examples for the first phase of predictive
learning (Fig. 2 (a)), while the emergence of helping behavior
is given as an example for the second phase (Fig. 2 (b)).

A. Emergence of Mirror Neuron System through Develop-
ment of Self-Other Cognition

As described in Section II-B, the self and others can be
differentiated by their predictabilities. One’s own behavior
is almost perfectly predictable whereas others’ behaviors are
less predictable. We hypothesized that the ability of self-
other cognition develops through the process of updating the
predictor and that mirror neuron systems emerge as a by-
product of self-other cognition.

Figure 3 (a) depicts a computational model for the de-
velopment of self-other cognition [24], [25]. A robot learns
the predictor by associating motor neurons M with visual
representations V through interactions with a caregiver (see
the left picture in Fig. 3 (b) for the experimental setting). In
the early stage of development (the left part of Fig. 3 (a)),

(a) A computational model for the development of self-other cognition.
Visual representations V are associated with motor neurons M while
the acuity of visual perception gradually improves over development.
This developmental change results in the association between the self’s
motion and others’ motion via motor neurons (i.e., mirror neuron
systems).

(b) Experimental setting for human-robot interaction (left) and the result
of sensorimotor learning (right). The stronger associations between the
self’s motion and corresponding motor neurons, and between others’ motion
and the same motor neurons indicate capability similar to mirror neuron
systems.

Fig. 3. Emergence of mirror neuron system though the development of
self-other cognition based on predictive learning (adapted from [24], [25]).

the robot has immature perceptual ability like young infants
and thus cannot differentiate motions produced by itself
and others. They are categorized in the same cluster in the
visual space despite their differences in spatial positions and
temporal delay. However, as the robot develops, it gradually
improves its perception and discriminates its own motions
from those performed by others (the right part of Fig. 3 (a)).
This developmental change from self-other assimilation to
self-other discrimination enables the robot to acquire mirror
neuron-like systems. Motor neurons M are associated with
both its and others’ motions owing to the non-differentiated
clusters in the early stage of development. The experimental
result shown in the right part of Fig. 3 (b) shows the acquired
sensorimotor mapping. The strong connections between M
and V for both its and others’ motions represent the function
of mirror neuron systems.

This model based on predictive learning sheds light on
debates on the origin of mirror neuron systems. Meltzoff
and Moore [26] have suggested that infants are endowed
with supramodal representation in their brain, where the
equivalence between the self and others are examined. Heyes
[27], in contrast, proposed the associative learning theory,



which does not suppose self-other equivalence and instead
emphasizes postnatal mapping between one’s own movement
and others’ movement. The model presented here bridges
the gap between these contradicting theories; Predictive
learning is a type of associative learning and utilizes self-
other equivalence to facilitate the association. We suggest
that this theory provides a more general architecture for
mirror neuron systems.

B. Hierarchical Development of Goal-Directed Action

The second example is the development of goal-directed
actions. Behavioral studies have shown that infants exhibit a
hierarchical representation of actions [28], [29]. If the goal
of an action is salient, infants tend to imitate only the goal
while ignoring the means (i.e., how to achieve the goal). If
the goal state is not underlined, they reproduce the process
to reach the goal. These findings indicate that the goal has a
higher priority than the means; thus, the goal is selectively
imitated by infants.

We hypothesized that differences in the prediction error
might cause the hierarchical representation of actions [30].
The goal, which is defined as the difference between the
initial and final states, involves the largest change in the
action, whereas the means is the process to reach the goal and
therefore usually involves a smaller change. This difference
between the goal and means appears in their prediction error,
which affects learning speed. A larger prediction error for
the goal is expected to be minimized first, whereas a smaller
error concerning the means is minimized later. The process
of such staged learning is considered as the hierarchical
representation of actions.

To verify this hypothesis, we designed a simple reaching
task for a two-link robot and trained it employing a recurrent
neural network with parametric bias (RNNPB) (see Fig. 4
(a)) [30]. RNNPB [31] can memorize multiple time series of
data in one network. PB values, which are static parameters,
are self-organized through learning to differentiate the data
patterns. Figure 4 (b) shows the close analysis of the learning
process: the PB values (top) and the output of the network
(bottom) after 10,000 (left) and 200,000 (right) training
iterations. Here, the network was trained with six types of
reaching actions: the combinations of two goals (A and B)
and three means (0: straight trajectory; 1: sinusoidal curve; 2:
sinusoidal curve with double frequency). The important find-
ing is that the network exhibited a hierarchical development
like infants. After 10,000 iterations of training, the RNNPB
differentiated only the goals (see the left part of Fig. 4 (b)).
The six circles with a triangle inside are separated only into
two groups: (A0, A1, A2) and (B0, B1, B2). The output of
the RNNPB also reproduced only the goal of the actions.
After 200,000 iterations of training, the RNNPB finally
differentiated all six actions (see the right side of Fig. 4
(b)). The output of the network now accurately imitated both
the goal and means. Although such nonlinear development
was not explicitly designed in this model, predictive learning
produced a hierarchical representation owing to the different
dynamics of the actions.

(a) Experimental setting for a reaching task (left) and a recurrent
neural network used for robot learning (right). A two-link robot learns
to reach for the targets (A and B) using three different means. The
network allows the robot to acquire multiple actions by differentiating
parametric biases.

(b) Analysis of the parametric biases (top) and the output of the network
(bottom). After 10,000 iterations of training (left), the network reproduces
only the goals but not the means. Two clusters in the PB space show the
internal representation. The network after 200,000 iterations of training
(right) finally reproduces both the goal and means.

Fig. 4. Hierarchical development of goal-directed action based on predic-
tive learning (adapted from [30]).

C. Emergence of Helping Behavior

The third example is the emergence of helping behavior.
In contrast to the above two experiments, which focused on
the process of updating the predictor (i.e., the first phase
of predictive learning), this experiment demonstrates how a
predicted action can be utilized to generate social behaviors
(i.e., the second phase of predictive learning). Behavioral
studies revealed that helping behaviors are already observed
in 14-month-old infants [32], [33]. For example, if an ex-
perimenter drops a clothespin on the floor while hanging a
towel, infants approach the experimenter and hand over the
pin to him. In another situation, if infants see an experimenter
trying to put books into a closed shelf, they come to open
the door so that the experimenter, whose hands are occupied
with the books, can pursue his desired action. Interestingly,
these pro-social behaviors are voluntarily generated. Infants
help others even without receiving social signals (e.g., ges-
ture and speech) requesting their help or offering a reward
for their helping actions. Psychologists have suggested that
infants’ pro-social behaviors might be motivated by their
understanding of others’ intention (called emotion-sharing
theory) and/or by their recognition of others’ goal (called
goal-alignment theory) [34]. The former theory assumes the
ability to estimate others’ internal minds, whereas the latter
requires only the ability to process observable events.



Fig. 5. Emergence of helping behavior based on predictive learning. The
robot is pushing a blue car on behalf of the person because the person could
not fulfill the goal. The increased prediction error shown at the bottom right
corner triggers an execution of the robot’s action.

We proposed a robotic model inspired by the goal-
alignment theory [35]. The key idea was that a robot pro-
duces helping actions by minimizing a prediction error. The
robot first acquires action repertoires through updating the
predictor. The acquired predictor is then used to predict the
future state of observed others’ actions and to estimate a
prediction error regarding the actions. If other individuals
successfully perform the task, the prediction error remains
small. If they fail in achieving the task, the prediction error
increases, which triggers the robot’s action. Figure 5 shows
an experiment where the humanoid robot iCub pushes a blue
car on behalf of the person stretching his left arm. As the
blue car was too far for the person to push, the robot detected
an increased prediction error as shown at the bottom right
corner in Fig. 5, and then executed the predicted action (i.e.,
pushing the car). This result suggests that seemingly pro-
social behaviors can emerge from non-social motivations,
such as the minimization of prediction error.

IV. AUTISM SPECTRUM DISORDER CAUSED BY
ATYPICAL TOLERANCE FOR PREDICTION ERROR

The robotic experiments described in Section III demon-
strated the importance of predictive learning in cognitive
development. The next question is whether the theory of pre-
dictive learning can account for the underlying mechanism
of developmental disorders.

Autism spectrum disorder (ASD) is characterized by dif-
ficulties in social communication (e.g., establishing joint
attention and understanding others’ intentions) [36]. While
traditional research has focused on the social aspects of
ASD, recent studies closely investigated atypical perception
[37] and atypical information processing in ASD [38], [39].
The hypotheses called ‘weak central coherence’ [38] and
‘difficulty in sensorimotor integration’ [39] suggest that a
weaker ability to integrate information and/or a stronger
ability to process primitive features may cause social de-
ficiencies in ASD. As sensorimotor information is processed
hierarchically in the human brain, an imbalance between
the higher and lower levels could result in a difficulty in
acquiring higher cognition (i.e., social cognition).

Inspired by the above hypotheses, we propose a compu-
tational model of ASD. Figure 6 illustrates the conceptual

Fig. 6. A potential underlying mechanism for ASD. Typically developing
people (left) apply a proper tolerance for prediction error and thus acquire
appropriate internal models with adaptability (multiple lines in the left
graph). People with ASD (right), on the other hand, adopt a smaller or a
larger tolerance for prediction error and thus obtain strictly or loosely fitting
models without adaptability or reactivity (the upper and lower graphs in the
right part, respectively). Such differences in their internal models may cause
difficulties in social interaction.

model based on the theory of predictive learning. Let us
assume that sensorimotor signals are represented as data
points in the graphs, and internal models using linear re-
gression are applied to recognize the signals. According to
[39], people with ASD seem to have an atypical tolerance
for prediction error. Typically developing people adopt a
proper tolerance for prediction error, as seen in the left
part of Fig. 6, and thus acquire adequate internal models.
The models represented by multiple lines loosely fit the
data points, indicating that they can easily adapt to envi-
ronmental changes. In contrast, people with ASD obtain
different internal models from typically developing people
(see the right part of Fig. 6). Their tolerance for prediction
error is either too small or too large. A smaller tolerance
generates strictly fitting models with lower adaptability (the
upper graph), whereas a larger tolerance results in loosely
fitting models with less reactivity (the lower graph). These
two types bear analogy to hyperesthesia and hypoesthesia,
respectively, which are commonly observed in ASD. We
suggest that ASD shares the common underlying mechanism
for cognition with typically developing people but appears
as two extremes due to their atypical tolerance [40].

This model further provides an insight into the mechanism
of social deficiencies. Figure 6 indicates that social difficul-
ties are caused by the difference between the internal models
of typically developing people and those of people with ASD,
rather than by disabilities in ASD. In other words, people
with and without ASD should be able to communicate if they
share internal models and a perceptual world. To verify this,
we have been developing a head-mounted display system to
simulate atypical perception in ASD [41]. This system allows
typically developing people to experience atypical perception
and thus share, though not exactly the same, internal models
with ASD. We aim to further investigate the influence of
atypical tolerance for predictive error on social abilities.

V. CONCLUSION

This paper has proposed a theory for cognitive develop-
ment based on predictive learning. Minimizing prediction



error by updating the predictor and/or executing a pre-
dicted action leads to the development of cognitive func-
tions. Robotic experiments provided supportive results for
it: The abilities for self-other detection, goal-directed action,
and helping behavior were successfully acquired by robots
through sensorimotor predictive learning.

The theory, however, has a limitation in producing higher
cognition. The computational model for helping behavior,
for example, does not suppose the differentiation between
the self from others. In order to enable a robot to recognize
observed others’ actions based on its internal model, we
assumed that the robot does not discriminate the self from
others despite their different perspectives. To cope with
this issue, we intend to integrate all models with self-other
cognition (i.e., the first model) so that the robot can ensure
the correspondence between itself and others, which is a
basis for social cognition.
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