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Introduction

In order to understand the interactions between the body,

brain and environment that generate various behaviours, it

is necessary to consider the network structure that dynam-

ically emerges from interactions among the brain regions

even though the brain has a fixed anatomical structure (Bull-

more and Sporns, 2009). Kuniyoshi and Suzuki (2004) pro-

posed a model in which adaptive behaviours emerge through

body constraints as chaotic itinerancy that is induced by cou-

pled chaotic elements. Moreover, Yamada and Kuniyoshi

(2012) revealed the influence of embodiment in nervous sys-

tem by embodied network. They constructed an embodied

network using transfer entropy based on motor information

and found that the embodied network had the properties of a

complex network. However, they did not specify the struc-

tures of the network and dynamic changes in the network

structure caused by different movements.

In this paper, we address the network structure relation-

ship that dynamically emerges through interactions between

the network, body and environment. We conducted a physi-

cal simulation using a snake-like robot with a nonlinear os-

cillator network (Mori et al., 2013) and estimated the net-

work structure based on transfer entropy for each different

movement. We defined a wired network for the physically

embedded network and a causality network for the estimated

network structure. In order to understand the relationships

of the oscillators in the emergent casualty networks within

the periodic behaviours by the robot, we extract the causal-

ity subnetworks by Infinite Relational Model (IRM) (Kemp

et al., 2006) and analyze the networks by the complex net-

work theory. Moreover, we measured average transfer en-

tropy between body and network to know relationship be-

tween body and the causality networks.

Experiment and Results

We conducted a physical simulation with a network structure

as shown in Figure 1. The network consisted of Bonhoedeff-

van der Pol oscillator for output neurons and hidden neu-

rons that directly and indirectly connect with muscles in the

robot, respectively.

Figure 1: Model of snake-liked robot
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The oscillator neurons were updated according to Eqs.1

and 2. Each neuron was connected through binary-weighted

connection of w, K is number of connections for each neu-

ron. In these equations, a, b, and c control the neuron be-

haviour, z is a tonic input and δ and ǫ control the strength of

the connections among the neurons. Moreover, α controls

the strength of the ratio between the body and network, and

I is the muscle length. In this research, we used a = 0.7,

b = 0.58, c = 2.0, δ = 0.01, ǫ = 0.01, α = 0.5 and

z = 0.3. The network included 26 output neurons and 174

hidden neurons.

In order to distinguish different movements, Mean-shift

clustering (Comaniciu and Meer, 2002) was used on a fea-

ture vector. The feature vector is constructed by correlation

coefficient of between joint angles within a time window and

dimensionally reduced by principal component analysis.

A causality network was constructed by means of trans-

fer entropy (Schreiber, 2000) among the neurons for each

longest movement pattern. The kernel estimation method

was used to calculate the transfer entropy. Since transfer

entropy has a direction, mutual information with IRM was

used to estimate cluster and relationship in the causality net-

work, here we defined each cluster as a subnetwork. The hy-

perparameters β and γ in (Kemp et al., 2006) were set 1 and



7. Figure 2 shows the topology of the wired network and the

estimated relationships and clusters of the causality network

according to the IRM with mutual information for the first

and second longest movement pattern. As shown in Figure

2, causality networks when first longest movement pattern

has less interaction with a subnetwork that has a many out-

put neurons to another subnetwork.

In order to quantitatively measure interaction between

body and network, average of transfer entropy was mea-

sured. As shown in Figure 3, low values of transfer entropy

between hidden neurons and output neurons are observed

during longer stable periodic movement.

To investigate the global property of the causality net-

works, average of clustering coefficient and shortest path

length were calculated for each movement pattern. Figure 4

shows longer stable periodic movement when the causality

network has a small clustering coefficient and large short-

est path length that indicate the network has less complex

network property.

Figure 2: (top left) Topology of the wired network. (bottom

left) Causality network for first longest movement pattern

and (bottom right) second longest movement pattern are esti-

mated by transfer entropy and clustered by IRM with mutual

information. Colored bars on matrix indicate different sub-

networks, and connections between different colored bars

indicate interactions between subnetworks. (top right) Num-

ber of neurons including subnetworks for (a) first movement

pattern and (b) second movement pattern.

Discussion and Conclusion

The presented results show that causality networks without

complex network property and fewer interactions with sub-

networks that had more output neurons to other subnetworks

induced longer periodic movements. Therefore, periodic

movement was dominated by the embodied network, and

Figure 3: Average of transfer entropy (left) from hidden neu-

rons to output neurons and (middle) from output neurons to

hidden neurons. (right) Time of stable periodic movement

for each longest movement pattern.

Figure 4: (top) Average clustering coefficient and (bottom)

average shortest path length.

communication among the subnetworks induced exploratory

movements.

Many issues require further study, especially the interac-

tions with different body structure and wired network. The

network structure also needs to be analysed by other prop-

erty of complex network.
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