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Abstract—Goals are concepts used in many different areas
of robotics, artificial intelligence, psychology, neuroscience, and
also philosophy. Despite the wide usage, there is no common
definition of a ‘“‘goal”. Rather, the term is used in substantially
different ways even within disciplines. This paper discusses these
notions and potentially unified views on goals, and points out
how different perspectives on the same term lead to different
arguments and can cause communication difficulties in the inter-
disciplinary community. We discuss how far goal terminologies
can be generally considered as desired end states of action and
point out the pivotal aspect of their explicit representation. As
a major point we discuss the relation of such goals with reward
and value systems from various perspectives.

Index Terms—Goals, Goal Systems Development, Reward and
Value Systems, Motivation

I. MOTIVATION

The concept of goals is used in many different disciplines
to describe, model, or analyze the behavior and function of
natural or artificial agents. Goals are used to describe simple
animal behavior towards objects [1]. In psychology goals are
considered to steer action [2] and facilitate learning [3], but
also provide a mechanism to understand others’ action [4]
— so in neuroscience [5], [6]. In philosophy goals are part
of a large discussion about intentionality and free will [7].
Research on artificial intelligence involves all of these aspects.
Consequently, goals have long played a crucial role in Al
systems and architectures [8].

In Developmental Robotics and Autonomous Mental Devel-
opment goals have long played a less significant role — driven
by the criticism of traditional AI agents with handcrafted
goals and specific purposes chosen by a designer [9]. In fact,
early psychologists like Piaget [10] denied a possible role of
goals in very early development. This view has been revised
[11], though, due to indications of early goal-directed behavior
even in neonates [12], [13]. Therefore, both the role of goals
for development as well as the development of the goals
themselves have become research targets in developmental
robotics [14], [15], [16]. The overarching, interdisciplinary
character of artificial intelligence and developmental robotics
requires to deal with conceptualizations from all of the other
disciplines. Such understanding is very difficult in the case
of goals. Goals come with a vast variety of (mostly implicit)
definitions even within disciplines. In different disciplines the
term is often used with very different meanings, premises and
implications, so misinterpretations are common.

The primary aim of this article is to point out these
differences, raise awareness of them, and then work towards a
common understanding of these facets. We focus particularly

on notions of goals and their relation to rewards and values,
and discuss how far they can be regarded as distinct, or
different perspectives on the same thing, or even synonymous.
In Sec. II we point out the core meaning of goals as desired end
states, which conforms with most, but not all, usages in natural
speech as well as research literature. For deviating cases we
discuss whether they can and should be still interpreted as
an instance of an overarching “goal” concept. In Sec. III
we discuss notions of such end-states that come with largely
different implications, such as an agent being intentional in
a philosophic sense, or indicating the mere presence of a
physical object. We analyze these notions and suggest that a
large variety of them can be explained by different perspectives
on the same matter. We point out that if goals and rewards are
kept as distinct concepts, they preserve an intimate relation that
can be well analyzed by means of these different perspectives.
We extend this thought in Sec. IV and discuss a possible
emergence of goal representations out of reward signals as
pointed out in previous research, and analyze assumptions and
consequences of regarding such relation as right or wrong. In
Sec. V we then discuss what such goal representations might
do more, better, or different for an agent. Finally, we give
concluding remarks in Sec. VL.

II. GOALS: DESIRED END-STATES OF ACTION?

What is the most common, the core meaning of a “goal”?
In order to approach a scientific definition it is worth also
considering the general use of such a word. Dictionaries —
across languages' — refer to the word as some

1) “state of affairs”, a “result”, or an “object”
2) concerning someone’s “action”, “ambition”, or “plan”
3) to which that ambition is “directed”, or which is “de-

sired” or “intended” to be reached.

The first point can be generally interpreted as some state, or
set of states of the world, in which certain criteria are true.
The second point — throughout languages — points out the
immediate relation to an action. We have previously pointed
out [16] that this distinguishes goals from wishes, which
are also desired states, but at least not necessarily related to
concrete action or planning. The third point states the direction
of the action: towards that state. It is worth mentioning
that none of these definitions mentions the reason for the
underlying intention, which is different from “purposes”.

loxforddictionaries.com “goal”; corresponding definitions in other lan-
guages: duden.de (German) ‘Ziel”; nlpwww.nict.go.jp/wn-ja/ (Japanese)
Synset 05980875-n; queried 2014/01/15



These definitions might seem obvious. Yet, scientific usage
of “goals” sometimes does go against this definition, and it is
important to see how. Also, the first and third point leave a lot
of space for interpretation. We discuss examples for both cases
in this section. Of course, dictionary definitions are not a hard
constraint for scientific usage, and vice versa. What we discuss
here is a matter of definition, not definite right or wrong.
Therefore we aim to work out these differences first, and
develop a terminology that is suited to discuss and understand
these differences within the interdisciplinary community.

A. Goals in BDI Architectures

Goals have for a long time played an important role in arti-
ficial intelligence. For instance in belief-desire-intention (BDI)
architectures [17], [18] goals are seen as instances of particular
“desires”, while “intentions” describe the active, momentary
pursuit of them. Out of this a large variety of particular
meanings and implementations has evolved [8]. For instance,
achieve goals describe the common sense of directing action
towards some end-state. Some particular architectures (see
[8]) have brought up maintain goals, which do not actually
describe a goal in a different sense, but give them an extended
life-cycle (e.g. staying active after the state has been initially
reached). Similarly, test and query goals can be seen as
desired states: they express the desire of the agent to know
a certain fact [8]. Hence they refer to a desired internal state
of the agent rather than an external one. These four types of
goals are fully compatible with the above description.

Yet, there have been other kinds of goal implementations
that do not fit the general definition. For example preserve
goals are purely passive observation processes that monitor
whether some condition is true. Braubach argued that these
are “merely called a goal” [8], i.e. they are not really goals.
In fact it seems plausible that over the history of BDI systems
development various actions have been declared as “goals”
within BDI only because there is no other way to introduce
an action within these architectures. preserve goals describe
an internal process that neither describes an actual desire, nor
any directedness, but could not have been introduced into BDI
if not making it one of the “goals”. This is very well visible
for another kind of goal: perform. It describes a mere action,
with no other end than the action being performed or not [8]. It
is explicitly something not directed to any goal, but something
that is just done. Hence, we suggest to keep these two cases
of preserve and perform goals out of a general definition of
goals. BDI architecture have been using another three kinds of
goal implementations, which we will pick up in the remainder
of this section.

B. Avoidance Behavior

A very different kind of behavioral aspect that has been
considered as a goal already in the early 20th century by Lewin
[19] is avoidance behavior [20]. Moskowitz described goals
as world states that are either approached or avoided [21].
This notion can include the avoidance of simple obstacles or
dangerous entities like predators or fire. In BDI architectures
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Fig. 1. (Left): Goals describe states towards which behavior is directed.

(Middle): Just reverting behavior to describe avoidance leads to divergence.
(Right): Avoidance can be described by all other states as target.

such behavior has been explicitly modeled by cease (as
opposed to achieve) and avoid (as opposed to maintain) goals
[8].

Obviously, this describes a relevant behavior. However, it is
completely contradictory to the dictionary definition as well
as common linguistic use. Pointing out that a child is trying
to avoid a hotplate in the kitchen by saying “The child’s
goal is the hotplate” does not work. It points out the exact
opposite because “goal” has a naturally positive meaning of
being directed fowards something. Now, is avoidance a goal
or not? Again, scientific usage of a word does not have to
correspond to non-scientific usage.

The distinction of approach and avoidance could mean that
simply the direction, or “sign” of behavior, is different. This
would indicate the existence of two fundamentally different
kinds of goals. When the sign is flipped in a goal-directed
process, does it correspond to avoidance? We have depicted
a very typical situation of approaching a goal (orange circle)
in Fig. 1 (left). The agent would go towards the goal from
anywhere else. Sometimes, but not necessarily, this is modeled
by linear approach dynamics. If avoidance would indeed be
a goal “in the opposite direction” (negative sign) the result
would look like Fig. 1 (middle): behavior diverges from the
circled area, and keeps diverging everywhere. We are not
aware of a single case in which avoidance has actually been
modeled like that. Rather, avoidance refers to a local behavior,
in which some area is avoided, but which does not require
further action if a sufficient distance is reached. Does that
mean that avoidance behavior corresponds to a goal that is
even more different from other goals than just by its sign? We
suggest no. We suggest to think of avoidance, in fact, in terms
of the same ‘“approach” goals as previously considered — by
considering which states are the desired ones. Fig. 1 (right)
shows a set of desired states that comprises all world states
except those in the avoided area (blue circle). This situation
exactly describes avoidance behavior that is local and stops
after a sufficient distance has been reached. This can be read as
“the child’s goal is [not hotplate]”, instead of the hotplate itself
being an anti- or negative goal. Hence, while the behavior of
approaching or avoiding is directly opposed (relative to an
object), we think that both can be understood in terms of the
same positive goal definition. In this formulation avoidance
does not refer to a totally different kind of goal, but to a
particular way the set of (desired) world states looks like. In



fact, already Lewin [19] was skeptical whether approach/avoid
is a crucial distinction because already behavior resulting from
different approach goals can take largely different forms.

C. Optimization and Reward

An interesting case of using the word goal is the context
of reward optimization. Linguistic usage includes examples
like “[The agent’s] goal is to maximize future success or
utility” [22] and variations of it [23]. Optimization also has
an implementation as goal in some BDI architectures, where
optimize refers to either the minimization or maximization of
some variable [8]. Is this compatible with the desired end-state
definition of goals? If not, what are the differences and should
the preliminary definition be extended?

Obviously, reward is both about action and desire, which
leaves the question how rewards relate to end-states. Acting
towards improving one’s reward is not about a particular state
in the first place, but rather about finding any better one [16].
However, the ultimately accomplished optimization might be
seen as to refer to the set of states that give a higher reward
than any other state. In this line of argumentation, Montague
noted that reward maximization might be seen as ‘“highly
abstracted definition of the goal” [24].

While goals are often considered as a very explicit set of
world states (e.g. variables values or ranges, knowing whether
something is true or not), we might also think of more implicit
definitions. For instance, puzzles and riddles define criteria for
a solution, without giving the solution right away. In the same
way n?=4,n€N is an implicit formulation of n=2. Hence,
we might call reward optimization a goal referring to the set
of states that give maximum reward.

There is, however, one difference between sets of maximum
rewards and other set-of-states definitions such as in riddles
and frequently employed meanings of goals. Many research
papers have pointed out the distinct role of goals (in humans
and/or AI) to determine whether a course of action was
successful or not, and if not to be able to compare actual
and desired state [25], [26], [2], [8], [27], [28]. This test of
achievement is not generally possible for reward optimization.
Determining the global optimum of a reward function is not
generally possible for any kind of function — not even how
much better one could get. Even for rather simple special
classes (e.g. quadratic optimization) the problem is NP-hard
[29]. Thus, in the general case an agent can by no means know
whether he has actually reached the desired set of states.

As an example of this difference we can consider high jump
athletes. We could say: “The goal of the athlete is to jump
as high as possible.” Yet, no one can for sure indicate what
height this refers to. Is the current world record of 2.45m the
maximum? We do not know whether or even by which margin
it is not. Before the invention of the Fosbury Flop athletes
optimized different techniques to jump higher and higher. Yet,
they had to discover a completely new technique to leave the
old local optimum and find a new, better local optimum. Still,
the global optimum might not have been discovered.

Intentional Goal

Physical Goal (representation)
(object) - Acting agent's mind
- Physics
- Behavior

Teleological Goal
(representation)

— Other agent's mind

— Teleology

- Engineering

Fig. 2. Physical goals are actual objects towards which behavior is directed.
Intentional goals and teleological goals are representations of such end-states
in the mind of an acting and observing agent respectively.

Many authors have not only emphasized the need for
explicit goals [25], [26], [2], [8], but also stated that goals
and rewards are simply different: goals require knowledge
and representation [30], [31], [1]. We will pick up the aspect
of representation in the next section. For the purpose of this
paper’s discussion we agree with the latter authors to keep
goals and rewards as separate concepts on a general level.
Goals and rewards are, first of all, not the exact same thing. In
the next section we will argue that, nevertheless, reinforcement
learning agents can be immediately understood in terms of
goals. We will then further concretize this relation in Sec. IV
and V and discuss various ways to connect them.

III. 3 PERSPECTIVES ON GOALS

In the previous section we have argued that a vast majority
of goal concepts can indeed be considered desired end states
of action. In this section, we discuss different perspectives on
exactly this matter that result in very different implications.

A. Physical Goals

The first very distinct perspective is that of physical goals.
For instance, in common language use, physical “goals” occur
in sports. In soccer and other sports the physical pair of posts
with a cross bar is called “goal” in English language — so is
the event of scoring. In running events the finish line is called
“Ziel” (“goal”) in German language.

This pattern can also be found in scientific literature. For
instance, in animal behavioral studies “goal-tracking” can refer
to the behavioral tracking of a physical goal [32] — an object.
In particular, objects that are attributed with an inherent value
“such as foods and fluids” [33] are frequently called goal.
Some authors explicitly noted that “goal-direct behavior” in
their view exclusively concerns behaviors that are oriented
to external, physical objects [24]. It is very important to see
that this perspective is very distinct from others: it does not
necessarily involve an actual wish, desire or intention of an
agent. It only concerns the physical world of objects and
movement or behavior which is possibly directed towards that
object. In the same way, the movement of a stone rolling down



a slope into a valley might be described by means of the valley
as a “goal” [34]. This is certainly a philosophical extreme
position, but it correctly points out the pure physical character
of this goal notion in the possible absence of any internal
process corresponding to the physical events.

The same distinction between physical objects and events in
the world versus internal processes within an agent has led to
the technically correct distinction between “rewards” (objects)
and “reward signals” (e.g. dopamine signals) in neuroscience.
We suggest the same distinction here and call the objects from
a physical world perspective “physical” goals as opposed to
the other two perspectives we discuss in this section.

B. Intentional Goals

Another perspective — on possibly the exact same thing
— is the internal operating of an acting agent. In this sense
numerous authors from different fields have pointed out that
goals in their sense refer to explicit, internal representations
of what the agent is going for ([34], [30], [31], [1], [24], [18],
[8], [21]). This has also been argued to be the key difference
between agents with goals and merely reinforcement learning
agents ([30], [31], [1]) that do not have explicit, “declarative”
[25] knowledge about the ends of their action. “Goals reside in
memory as mental representations” [21]. Such representations
should in particular reflect what aspects of a situation are
relevant in relation to action and the underlying desire [1]
and thus abstract from irrelevant aspects ([26], [21]).

In the philosophy of mind this aspect is immediately linked
to the concept of intentionality [35], [34]. Here intentionality
(not be confused with common sense “intention”) refers to “the
power of minds to be about, to represent, or to stand for, things,
properties and states of affairs” [7]. This notion of goals is also
used in neuroscience within the concept of agents’ “cognitive
control” [24]. With smaller cognitive or philosophical meaning
such explicit internal goal representations are also used in
standard control systems (e.g. a robot’s arm control) [36],
[37] or standard planning systems [27]. In such systems goals
describe which variables or properties of the environment or
agent should have which value.

This kind of goal notion refers to the same kind of thing,
i.e. end states, just from a different perspective. Yet, this
difference in perspective causes largely different implications.
Also, an intentional goal might differ from a physical goal
in various ways when considering particular instances of
behavior. Physical goals typically refer to a particular thing
such as an apple, while the intentional goal could be food
in general. In other cases, the agent might not be able to
reach its intentional goal because of a lack of procedural skill.
In a behavioral experiment, an object called “goal” by the
experimenter might have entirely nothing to do with an agent’s
actual intentional goal. Other intentional goals might have no
external physical correspondence, such as “query” goals in
BDI [8] which refer to an internal state of knowledge.

C. Teleological Goals

We have discussed the physical view and the acting agent’s
internal view on goals. Another very common perspective is
that of other agents on the acting agent. Imitation [38], [39]
heavily involves this perspective as an agent tries to understand
another one’s action and utilize it for himself. Thereby the
“interpreted” goal is not necessarily the same as the acting
agent’s intentional goal, and the observing agent itself might
have a different intentional goal. In fact, research on imitation
also involves an additional strong physical perspective when
imitation is said to be “directed” to a physical goal [38], [39].

We use the word “teleological” goal in this paper because
of the outside perspective, trying to make sense of something
else. In this way, already infants pursue a teleological under-
standing of their environment [40], [41]. McFarland noted that
humans in general seem to have a “teleological imperative”
[42], forcing them to see the environment and other agents
by attributing goals. In this way even behavior or motion that
is only “apparently purposeful” [34], such as a stone rolling
down into a valley, can be easily misinterpreted in terms of an
intentional goal. Also scientific behavioral studies are easily
misinterpreted in this way.

Teleological goals can be different from physical and inten-
tional ones when talking about particular instances of behavior,
yet all refer to the ends of action. Interestingly, teleological
goals seem (just like intentional ones) to imply a represen-
tation — just in a different agent’s mind. Our mind makes
sense of others’ action by linking them to our knowledge
and our representations of the world. In this way research on
mirror neuron systems seems to indicate a brain area in which
our intentional goal and teleological goals (interpreting others’
behavior) are commonly processed [6], [43] — and the neurons
that do the actual representation are called mirror neurons.

In this paper we refer to “teleological goals” as repre-
sentations used to explain actions that have not been self-
generated. This includes the aforementioned understanding
of observed action. The same concept could also be used
within a single mind, for instance when actions were taken
without deliberation and then are postdictively rationalized
[44]. Interestingly, this thought can be smoothly extended to
representations of “hypothetical” actions, for instance those an
engineer has in mind for a robot to perform.

D. Goal vs. Reward: Revisited

We think that exactly this kind of teleological goals can
often be observed for reinforcement learning agents that at-
tempt to maximize their reward. Even if the agent does not
have an intentional goal representation as discussed above,
the engineer who builds the system can have a very clear
representation — a teleological goal — of the agent’s behavior
in mind. With the vocabulary introduced so far we can indeed
talk about goals of a reinforcement learning agent from at least
two perspectives (see Fig. 3).

Firstly, an engineer would try to develop, or “shape” [45] a
reward function that corresponds to his teleological goal of the
agent’s future behavior. In some cases — though not generally
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Fig. 3. In reinforcement learning, policies potentially encode physical goals
among other things, while the reward/value function can contain a designer’s
teleological goals. Intentional goals might be learned as abstractions of those.

— this goal is coded explicitly into the reward function. For
instance, the task to maneuver a robot arm through a via-point
can be formulated by explicitly rewarding the distance to that
point [46], or archery skills by rewarding the distance from a
target [47]. Similarly, maze tasks typically come with explic-
itly encoded target states [23]. In this way the reward function
encodes the designer’s teleological goal. Then, is the reward
function (or later “value” function) itself an intentional goal of
the agent? We argue that it is not. Firstly because even if the
teleological goal is explicitly contained in the reward function,
it is typically not accessible to the agent but fully hidden
inside the reward function. Secondly, and more importantly,
the teleological goal might not be the only term in the reward
function. Other factors such as energy or obstacle avoidance
might play an equal role. Eventually, the agent’s learning of
a value function which predicts future reward removes any
explicit appearance of the goal representation. Hence, both
reward and value function can contain information about an
explicit goal, but that is not the same as “being” a goal
or directly representing it. After all, reinforcement learning
agents can also have reward functions that do not contain an
immediate teleological goal at all, but rather abstract criteria
such as information gathering [48], [14], [16], [22]. In the
same way, an agent’s policy can correspond to physical goals
by encoding the behavior directed towards it. This can also not
be seen as a direct representation since the policy includes any
other intermediate or transient part of behavior as well, and
there is no explicit reference to the end-state.

This perspective on reinforcement learning also provides
a description of how inverse reinforcement learning [49] is
a teleological process. It starts with the physically observed
behavior and estimates a reward and value function that can
serve as a teleological explanation of that behavior. However,
it does not provide an explicit teleological goal in the sense
of a distinct representation of the actions’ ends. We will argue
in the next section how the learning of such explicit represen-
tations out of rewards could serve a possible explanation for
the appearance of intentional goals.
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Fig. 4. Intentional goals might reflect rewards that are contingent with both
the situation an agent is situated in as well as its actions [26].

IV. DO REWARDS ORIGINATE INTENTIONAL GOALS?

The common way in which nowadays Al systems have
intentional goals is that an engineer immediately encodes them
at the time of development. Humans, in contrast, are generally
assumed not to come with pre-coded intentional goals right
away — although they have them later in life as independent
and individual agents. The process in between, that develops
goals out of a state without them, is not generally clear. If the
mind is believed to be essentially deterministic, there must be
chains of events and mechanisms that form intentional goals.
This does not have to be as “direct” as an engineer putting
goals right into a system — a system that Dennett would call a
“design stance” [35] in contrast to an “intentional stance”. Yet,
there must be some mechanisms. Such, possibly indirect or
inexplicit, chains of mechanisms have sometimes been referred
to as origination [50], [51], which is closely linked to debates
about free will: “The will is the capacity of the self to originate
goals which in turn determine the acts of the self” [51].

Thinking about the possible kind of such a mechanism
vastly depends on how we define goals in the first place.
We have initially pointed out that goals are an expression of
desire. They have to reflect some value, which can be thought
of in terms of internal reward signals. In fact, many authors
have suggested an intimate function relation between goals
and rewards [1], [30], [31], [14]. In some cases, this relation
has been made explicit by stating that rewards could be the
mechanism that originates intentional goals [24], [16]. In this
section, we briefly review these proposals and discuss how
this idea fits with the previously discussed relation of goals
and rewards as well as with neuroscientific evidence.

A. Goals from Rewards

We had previously pointed out the idea to form intentional
goals out of rewards [16], [26] based on an argument about
possible information sources: if goals reflect a desire or value,
then the information that originates goals should likewise
reflect that value, at least in a more rudimentary manner.
Starting from three possible learning signals in machine
learning (supervised, unsupervised, reward), we argued that
supervised learning involves an explicit ground truth signal
that would already require the goal in advance. Unsupervised
learning merely reflects signals statistics, which do not carry
any inherent value. Reward signals, on the other hand, seem



suited as a source of information as they come with simple
value semantics pointing out how good or bad the current
conduct is. From such reward signals an agent could learn
representations of what concrete patterns within the potentially
high-dimensional streams of sensory and motor information
coincide with the reward. In this sense intentional goals
could be seen as abstractions ([21], [26]) of action-related
rewards describing what contingency of sensory context and
action causes the reward (see Fig. 4). Also in hierarchical
reinforcement learning, algorithms have been proposed that
identify significant states towards which policies are directed
(e.g. “bottleneck” states) in terms of goals ([52], [53], [54]).

Evidence and recent hypotheses in neuroscience point in
the same direction. Brain areas that have long been associated
with goals are the prefrontal cortex (in terms of decision
making) [5] and the (pre-)motor cortex [55] (in terms of
immediate action generation). Reward dependencies have been
found in both parts of the cortex [56]. In the case of the pre-
frontal cortex, it has been explicitly hypothesized that reward-
prediction errors, encoded by dopamine, trigger changes of
goal-representation (“Dopamine gating hypothesis™ [24]). This
would indeed imply that at least prefrontal goal representations
are formed out of a reward based learning signal as argued in
[16], [26].

Such goal formation seems consistent with notions of goals
or no-goals in conditioning scenarios [31], [30]. Instrumental
conditioning is well formalized and understood in terms of
reward-based reinforcement learning — yet not considered
a highly cognitive or goal-driven behavior per se. Instru-
mental conditioning generates purely procedural knowledge
— the “agent does not ‘know’ about the consequences of
its behavior” [30]. Yet, Dickinson argued that such simple
conditioning might turn into actual goal-directed behavior if
(7) the goals are explicitly represented and (i7) correspond to
the future expected reward and its contingency to the action
[1]. While reward can have an immediate correspondence with
teleological and physical goals, intentional goals might thus be
the result of a learning process that abstracts reward relevant
aspects into an explicit internal representation.

B. Goals not from Rewards

Intentional goals could be learned out of reward signals —
supposing these are the basic manifestation of desire. While
this seems in line with various conceptualizations of goals as
well as neuroscientific evidence, we can not generally exclude
the existence of other influences on human goal formation or
the existence of goals being formed without any relation to
rewards. In fact multiple authors have discussed a formation
of goals out of mere sensorimotor contingencies without
considering reward signals or intrinsic desires but in terms of
anticipations described by ideomotor theory [57], [58]. Others
have argued that goals are formed through imitation [4].

Goals that are not originated from rewards or values but
from other, possibly supervised or unsupervised sources of
information create two challenges: Firstly, it is not clear
in what sense they could generally reflect a desire at all.

Sensorimotor contingencies as well as observed action from
others clearly point out possibilities ([59], [60]) of action. Yet,
not all possibilities are generally desirable. Consequently, it is
not clear which particular goal an agent should try to pursue
in a given moment if that representation is not rooted in the
agent’s own desire. Secondly, they would describe a separate
complete branch of action steering and decision making — one
that by definition is distinct from reward-signal based decision
making. If that would be the case we would need to find
models and arguments for selecting one of both systems for a
particular decision. Theories of cognition commonly assume
that we weigh and compare our options (e.g. different instances
of possible goals) in order to make a decision on what to
do [17], [50], [51], [35], [34]. Such comparison could not
be performed by means of reward (supposing internal reward
signals also reflect a system’s “value”), unless the goal without
reward-origination is attributed post-hoc with a value through
some loophole. If such post-hoc attribution does not take place,
a general decision rule like “unsupervised goal always wins
against reward-related goal” could take place. This would,
however, describe situations in which we are not capable of
weighing our options but we pursue a goal regardless of its
value.

We are in no position to simply deny the existence of non-
reward or value related goals. However, it is not clear how they
could reflect desires or values which are commonly assumed to
be the basis of our decision making [17], [50], [51], [35], [34].
Rather, they would seem to generate a situation of potentially
contradicting, yet not comparable, decision systems — which
is a quandary to the extent that it is unclear how a decision
mechanism could look like.

V. BENEFIT OF INTENTIONAL GOALS OVER REWARDS

So far we have discussed considering goals and rewards first
of all as different things, but also that rewards can immediately
reflect teleological goals and could be used to form intentional
goals. In that case, intentional goals would in fact not point to
anything else than what is expected to be rewarding anyway.
Intentional goals and rewards would describe the exact same
behavior. If that should be the case, then what could intentional
goals be useful for? Considering them independent leaves the
quandary of not knowing how to decide between them. Yet,
could not an agent just stick to rewards without representing
intentional goals? At first sight, reward could seem sufficient
for a cognitive system. The interesting question that might
tell us about the nature of goals and their role for cognition
is: under which circumstances or assumptions could reward
be enough; and how could intentional goals be useful if such
conditions are not met.

We can consider a classical reinforcement learning system
and — at this moment — assume that it has already learned
a full model of its environment and reward. It could select
an optimal action based on its value function, or exploit an
already learned optimal policy. This would be fully sufficient
— unless the agent’s computational resources are too little
to fully evaluate its model, e.g. in very high dimensions



of continuous measures. In such computationally expensive
domains the learning of representations such as dimensionality
reduction or auto-encoders has long been considered. Goal rep-
resentation expressing explicitly what is relevant for reward,
compared to representations based on unsupervised signal
statistics, could be very useful when facing such constraints.
Early experimental evidence [26] supports that learned goals
can save computational resources.

A. Quality as Source of Information

Besides facing such resource constraints, a system first faces
the challenge to explore and learn. It is well known that goal-
representations (if they already exist) can be useful for the
acquisition of skills. This advantage is, for instance, exploited
in goal babbling [15], [59]. In relation to reinforcement
learning, it has been traditionally argued that while rewards
might describe the more general setting, learning with goals
and corresponding representations of action outcomes, as in
motor control [37], could provide a more informative signal
for learning and control [61]. Rewards only provide a scalar
learning signal corresponding to “magnitude” [28] of how
good/bad an action is. In contrast, explicit goal representations
in relation to the outcome of an action provide “directional in-
formation” [28]: they also point out how far the goal has been
achieved or not, and in which direction an improvement should
be conducted [2]. An analogy of this is the relation between
chemotaxis and visually approaching an object. Chemotaxis is
delicate since it has to rely on a scalar measure of how close a
physical goal could be. If the object is visually perceivable as
goal, it is possible to translate this into an immediate direction
in which an agent can move to get closer.

Not very much is known yet about situations in which
such representations are not available right away. Research
in hierarchical reinforcement learning suggests that the iden-
tification of “bottleneck™ states as goals can indeed improve
and accelerate ongoing learning [52], [53]. It seems plausible
that also more general learning of goals as abstractions from
rewards could guide and facilitate learning, but that still needs
to be shown.

B. Modular Systems

A further possible advantage of intentional goal representa-
tions could be the integration of reward-based learning into
larger cognitive architectures. Systems that are not mono-
lithic reinforcement learners, but modular, have to exchange
information between different modules in terms of some
representation. For instance, authors in neuroscience have
suggested analogies of parts of the brain and different learning
mechanisms [62], [63]: unsupervised learning in the cortex,
supervised learning in the cerebellum, and reinforcement
learning in the midbrain. Reinforcement learning mechanisms
could simply emit a copy of the expected reward signal, but
this can not tell what is currently pursued. Value-functions
or policies could tell, but it seems unlikely that a neural
system could transmit them as entire functions. Intentional
goal representations of the rewards, on the other hand, seem

to be a suitable interface between reinforcement learning and
(un-)supervised learning in a larger cognitive architecture.
For instance, reinforcement learning parts could inform other
structures about present desires and intentions, that could then
communicate them by means of speech, or relate the own goals
to observations from imitation learning.

VI. CONCLUSIONS

What are goals? And if so, how many? There is no inher-
ently right answer to these question. Rather, we need to define
such terms in a way that is useful for scientific communication.
We have reviewed a wide variety of terminologies and argued
that desired end-states of action are at the core of the vast
majority. Still, there can be very different implementations,
and in particular very different perspectives on goals. Within
a larger interdisciplinary research context it is therefore crucial
to understand these perspectives in order to understand other
researchers’ arguments and draw the right conclusions from
experiments.

Notions of rewards and goals have often been used in the
same context, yet sometimes synonymously and sometimes
as distinct concepts. We have therefore proposed to look at
goals from three different perspectives, each of which can
be related to rewards. In particular we discussed previously
proposed connections between rewards and intentional goal
representations corresponding to such rewards. We have spec-
ulated about and discussed evidence in support of the utility of
such goals in a learning system. Yet, the role of such goals in
developing systems is far from being completely understood
and we hope that the discussions in this paper can further
facilitate research on it.
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