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Emergence of Altruistic Behavior Through the
Minimization of Prediction Error

Jimmy Baraglia, Yukie Nagai, and Minoru Asada

Abstract—The emergence of altruistic behavior in infants fos-
ters their social development and supports their involvement
in our society. Altruistic tendencies, intended to benefit oth-
ers with no apparent rewards, are also very useful for social
robots that are designed to be used in our households. Yet, to
make robots capable of learning how to help others as infants
do, it is important to understand the mechanisms and motives
responsible for the development of altruistic behavior. Further,
understanding the mechanisms behind the early development of
pro-social behavior would be a great contribution to the field
of developmental psychology. To these ends, we hypothesize that
infants from 14 months of age help others to minimize the dif-
ferences between predicted actions and observations, that is,
to minimize prediction errors. To evaluate our hypothesis, we
created a computational model based on psychological studies
and implemented it in real and simulated robots. Our system
first acquires its own sensory-motor representation by interact-
ing with its environment. Then, using its experience, the system
recognizes and predicts others’ actions and uses this prediction
to estimate a prediction error. Our experiments demonstrated
that our robots could spontaneously generate helping behav-
iors by being motivated by the minimization of prediction
errors.

Index Terms—Altruistic behavior, cognitive developmental
robotics, helping behavior, prediction error.

I. INTRODUCTION

INFANTS’ tendencies to help others and to act altruisti-
cally have been observed and studied for decades, and

young children were first considered not to be sufficiently
socially and cognitively developed to generate extensive and
efficient helping1 behavior [2]. Scientists have recently proved
that infants from around 14 months of age are in fact capa-
ble of helping others even without the expectation of future
rewards [19], [23], [35]–[37]. In case of adult altruism,
several researchers have reported theories on selfish altru-
ism [7], kin altruism [1], [9], or reciprocal altruism [30] as
potential mechanisms for them. However, only few theories
have explained infants’ motivations to act altruistically and
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1The term helping is, according to Bar-Tal (1982), suggested to be “a term

meaning an act that benefits others with no external rewards promised a priori
in return.”

described the mechanisms or the cognitive functions that fos-
ter the development of such comportment. To shed light on the
origins of altruistic behavior, we reviewed different theories
on neurocognitive motivations and the eventual mechanisms
underlying prosocial behavior in infancy. In the following
parts, we summarize two major theories proposed in [26] and
highlight the main issues of these models (for a more general
review of the different models, see [26]).

A. Emotion-Sharing Models

Emotion-sharing models suggest that an early form of
empathy, in the form of emotional contagion, could be
the primary behavioral motivation for infants to act altru-
istically [11], [12], [37]. Studies related to emotion-sharing
models indeed posit that infants are primed to generate altru-
istic behavior in order to alleviate others’ distress [14], [39].
This requires the ability to actually “feel” another person’s
distress, which is often called emotional contagion and repre-
sents “an automatic response resulting in a similar emotion
being aroused in the observer as a direct result of per-
ceiving the expressed emotion of another” (definition by
Decety and Svetlova [12]). This ability is accepted as one
of the lowest forms of empathy [11] and the cognitive
requisite to altruism. Some scientists claimed that infants expe-
rience an empathy-based feeling toward individuals in need
of help and that it serves as the primary motive for altru-
istic behavior [16], [31]. In practice, Warneken et al. [35]
and Warneken and Tomasello [37] showed that infants helped
others in achieving their goals and postulated that it substanti-
ated the existence of an altruistic motivation in early infancy,
closely related to empathy. It has been argued that empathetic
concern is also independent from self-reflective abilities [10]
and that empathy may be an innate capacity [15]. Studies have
shown that very young children, before the age at which they
develop self-other discrimination, attempted to alleviate the
distress of others and showed empathetic concern [39], and
that 12-month-old infants were concerned for others in distress
and sometimes intervened by comforting them [14].

However, the cognitive abilities required by infants to feel
empathetic concern for others, and thus to develop altruistic
behavior on the basis of the alleviation of the shared distress
remain very controversial. Some experiments have argued that
self-other differentiation is required to acquire empathetic con-
cern for others and to act altruistically, which implies that only
infants that passed the self-recognition task would help oth-
ers altruistically [5], [6], [18], [26]. Nevertheless, undeniable
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proofs of the helping behavior have been shown during the first
half of the second year of life, even though self-other differ-
entiation and self-concept are immature. On the basis of these
findings, we can assume that another source of motivation,
more general in nature, may provide behavioral motivation to
act altruistically.

B. Goal-Alignment Models

Unlike emotion-sharing models, which are based on emo-
tional contagion and empathetic concern, the goal-alignment
models propose that more general mechanisms, based on the
understanding of others’ goals, serve as behavioral motivations
for infants to help others. In other words, inferring or feeling
others’ mental or emotional state is not required for acting
altruistically, but the ability to understand others’ goals is a
sufficient prerequisite.

Goal understanding and goal inference have been widely
studied and are known to appear very early in the cogni-
tive development of infants. Sommerville and Woodward [33]
proved that infants from three months of age could already
detect the goal structure of an action after a time of habituation
during which the infants could interact with their environ-
ment. Furthermore, Kanakogi and Itakura [17] showed that
infants from six months of age could predict the goal of
a grasping motion if it was performed by a human hand,
whereas they could not do so if the reaching was performed
with a mechanical claw or the back of the hand. Finally,
Kuhlmeier et al. [20] showed that 12-month-old infants could
recognize goal-directed actions and interpret future actions of
an actor on the basis of the previously observed actions in
another context. On the basis of these evidences, infants clearly
possess the ability to understand others’ goals. Therefore,
researchers have argued that because of the immature self-
other differentiation during early infancy, contagious processes
might affect infants in such a manner that they unconsciously
take others’ goals as their own [3].

Even if it has been shown that infants are unconsciously
affected by others’ goals, the motivation to achieve these goals
and help others in achieving their actions is not intuitive,
which explains the popularity of emotion-sharing models.
Nevertheless, studies showed that infants could help in situa-
tions where emotional contagion or empathetic concerns are
unlikely. For instance, Kenward and Gredebäck [19] reported
that 18-month-old infants could help spherical objects with
no human-like body to reach their goals, which may imply
that empathy elicited by direct body matching is not appli-
cable. Further, they postulated that altruistic behavior may be
“primed by an unfulfilled goal,” which supports the possibility
of a general mechanism, different from empathy and con-
cern for others, that could motivate infants to exhibit altruistic
behavior.

C. Our Hypothesis: Prediction Error Minimization

On the basis of previous evidences and the goal-alignment
models, we try to shed light on a possible nonempathy-based
motivation to altruistic behavior by hypothesizing that infants
help others to minimize a prediction error (hereafter PE) that

they estimate for others’ action goals. Prediction errors are
estimated as the differences between predicted actions and
observations. Infants are supposed to first learn sensory-motor
experiences by interacting with their environment. Then, using
the past experiences, infants recognize and predict others’
actions as if they are infants’ own actions. PE estimated dur-
ing this process finally triggers infants’ actions to minimize
it, which results in infants’ helping behaviors. We suggest
that the above process is closely related to the mirror neuron
systems (hereafter MNS), which are groups of neurons fir-
ing both when executing and observing similar goal-directed
actions [28]. It has been shown that infants’, as well as adults’
MNS activates for observed actions that they can perform by
themselves [27], [29] (also discussed in [33]). The MNS the-
ory therefore supports our hypothesis about infants’ ability to
recognize and predict others’ actions as if they are infants’
actions.

To test the plausibility of our hypothesis and determine
to what extent it can explain infants’ altruistic behavior, we
present a computational model studying the effect of PE min-
imization on behavioral motivations. Our model is based on
evidences describing infants abilities to understand and pre-
dict others’ action goals. An important point is that it does not
have any explicit intention to help others by design. Instead,
altruistic behaviors emerge as by-products of goal-alignment,
which suggests that infants always try to achieve predicted
action plans. In our model, this motivation is implemented
through the minimization of prediction-error. To identify what
are the required cognitive abilities to estimate PE and deter-
mine whether its minimization is a possible motivation for
altruistic behavior, we present two series of experiments: the
first uses a simulated environment, and the second uses a
humanoid robot iCub. The rest of this paper is organized as
follows. First, we present our computational model and our
experimental settings. Finally, results obtained from the two
series of experiments are closely discussed, followed by future
directions.

II. MODEL FOR THE MINIMIZATION

OF PREDICTION ERROR

Our computational model is based on behavioral evidences
of infant development and attempts to understand and repro-
duce the mechanisms of the emergence of altruistic behavior in
14-month-old infants. We then assume that our system has the
cognitive and motor abilities of a 14-month-old infant, such
as the ability to perform goal-directed actions, to detect and
recognize action goals [17], [33], and to represent a behavior
as relations between actions and objects [38]. Furthermore, as
it has been shown to happen in the human brain [4], [32], our
system can estimate PE signals when the actual outcome of
an observed action is different from the predicted one.

Fig. 1 shows the overview of our model for the minimiza-
tion of PE, which consists of four interdependent modules:
1) the scene recognition; 2) action prediction; 3) estimation of
PE; and 4) minimization of PE. These modules are equipped
with the abilities to recognize action primitives and the associ-
ated objects (conditions), to predict next action primitives, to
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Fig. 1. Model for the minimization of PE. The four modules are used to recognize action primitives and the associated objects (conditions), to predict the
next action primitives, to estimate PE and to generate the primitive to minimize PE.

estimate PE, and to generate actions to minimize PE, respec-
tively. The action prediction module uses a directed graph,
hereafter called an action graph, which represents the robot’s
“memory.” The action graph is generated when the robot expe-
riences actions with its environment. More details about the
four aforementioned modules are presented in the following
sections.

A. Scene Recognition Module

This module recognizes action primitives (noted A in the
next sections) and objects contained in the scene (noted C in
the next sections). Action primitives are simple motions that
the robot can execute like reaching for a Ball, Grasping a
Mug, covering a marker, etc. Hereafter, we call a sequence
of action primitives “action.” For instance, a “pushing” action
contains the action primitives Reach for an object and move
it. Objects are elements of the scene that can be interacted
with like a Ball, a Mug, etc. Objects are called “conditions”
hereafter as they are needed for executing actions. The result
of the recognition is used by the action prediction module
described in Section II-B.

B. Action Prediction Module

The action prediction module estimates the future action
primitive based on the currently-observed primitive. This pro-
cess is presented below as action prediction. The prediction
is performed through the action graph, which memorizes the
robot’s past experience. In the following parts, we describe
how the action graph is generated and how it is used for the
action prediction.

1) Action Graph: The action graph (G) is made of two
types of vertice, hereafter called nodes, representing the sys-
tem’s sensory-motor representation, namely the previously
experienced action primitives and their associated objects.

1) The action nodes A that represent action primitives per-
formed by the robot; The number of times an action
node has been performed by the robot is noted NBA.

2) The condition nodes C that represent the conditions
for the action primitives, namely the object the robot
interacted with while performing action primitives.

Action nodes are connected by directed edges EA that encode
the number of times a transition between two action nodes was

experienced. The number of times a transition EA has been
activated is noted NBAi→Aj , where Ai and Aj are two different
action nodes. The conditional relation of condition nodes to
action nodes is represented by another type of edges noted
EC. The graph is then represented by

G = (A, C, EA, EC) (1)

where all nodes are Boolean variables and can take a value of
1 (active) or 0 (inactive).

Fig. 2 shows an example of how an action graph is gen-
erated while experiencing three actions (action I twice and
action II once). Action I: “Reach for a Ball, Grasp the Ball,
and then Put the Ball in an Opened Box”; action II: “Reach
for a Ball, Grasp the Ball, Open a Closed Box, and then
Put the Ball in the Opened Box.” Action I was experienced
first, then action II and finally action I again. In this exam-
ple, A = {A1, A2, A3, A4} and C = {C1, C2, C3}. A2 is the
child node of A1, while A1 is the parent node of A2. The
numerals inside the action nodes in Fig. 2 represent the num-
ber of times the primitives were successfully executed, noted
NBA. For instance, Reach for was executed during all actions,
NBA1 = 3, while Open was executed once during action II,
NBA3 = 1. The numerals by the directed edge in Fig. 2 repre-
sent the number of times the connected child and parent nodes
were performed successively, noted NBAi→Aj . For instance,
Open was performed one time after executing Grasp, thus
NBA2→A3 = 1.

The action node corresponding to the currently recognized
action primitive is denoted as Ai(n) ∈ A, and the condition
nodes representing its conditions are contained in the subset
CAi(n)

⊂ C. n represents the current discrete time step. In
Fig. 2, for instance, the action primitive “Put a Ball inside an
Opened Box” is described by the action node “Put” (A4(n))
and the condition nodes “Ball” and “Opened Box,” which are
contained in CA4(n)

= {C1, C3}.
In practice, the action graph is constructed when the system

executes actions with its environment. This process is ruled by
the following mechanisms:

1) The system performs a primitive from its action reper-
toire involving objects in the scene.

2) For the executed primitive, the corresponding action
node Ai and condition node(s) CAi are added to the
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Fig. 2. Example of the different steps in the creation of an action graph after executing two different actions. action I: Reach for a Ball, Grasp the Ball,
and then Put the Ball in an Opened Box; action II: Reach for a Ball, Grasp the Ball, Open a Closed Box, and then Put the Ball in the Opened Box. Action I
was experienced first, then action II and finally action I again. The small numerals inside the action nodes represent the number of times the action primitive
corresponding to the node was successfully executed, namely NBA. The small numerals by the directed edge represent the number of times the connected
child and parent nodes were performed successively, noted NBAi→Aj .

action graph. The condition nodes are connected to the
action node by directed edge. If an action primitive is
performed several times with different objects, multiple
instances of the action nodes are created and connected
to the corresponding subset of conditions. The delay
between the onset and the completion of the action prim-
itive is measured as TAi . The value NBAi , representing
the number of times this primitive has been executed, is
initialized at 1.

3) If the node corresponding to the performed primitive
with the same subset of conditions is already contained
in the graph (i.e., if the system has already experienced
the primitive before), the delay TAi is averaged and the
value NBAi is incremented.

4) If two action primitives are performed consecutively
within a delay shorter than a value Tmax (fixed at five
seconds here), the corresponding action nodes Ah(n−1)

and Ai(n) are connected by a directed edge EAh→Ai . The
value NBAi→Aj , representing the number of times Aj was
executed after Ai, is initialized at 1 and incremented each
time the same transition occurs. If the two action prim-
itives are performed consecutively with a delay higher
than Tmax, the newly performed primitive is considered
as part of another action. Therefore, the action node is
not connected by any edge.

By performing these learning operations multiple times with
different objects and for all action primitives in the sys-
tem’s repertoire, the system becomes able to perform action
prediction, which is explained in more details below.

2) Action Prediction: Based on the experience represented
in the action graph, the system calculates the probability of
observing a primitive Aj(n+1) when a node Ai(n) is activated.
Ai(n) can either be activated when the system is executing the
action primitive or when it is observing another individual
performing the same primitive. This probability is represented
by the conditional probabilities P(Aj(n+1) = 1|Ai(n)), which is
calculated as follows:

P(Aj(n+1) = 1|Ai(n)) = NBAi→Aj

NBAi

(2)

where NBAi represents the number of times the primitive Ai

was previously executed by the system, and NBAi→Aj repre-
sents the number of times Aj was performed after Ai. The sum

of the probabilities for a given current state Ai(n) respects

∑

j

P(Aj(n+1) = 1|Ai(n)) = 1. (3)

The system then tries to find the most likely future action
node Â(n+1). To that end, the system detects the node Aj(n+1)

with the highest probability P(Aj(n+1) = 1|Ai(n)) and that can
be activated. Indeed, if the value of at least one of its condi-
tions Ck ∈ CAj(n+1)

is 0, the corresponding primitive Aj(n+1)

cannot be activated. Therefore, the future primitive Â(n+1) is

Â(n+1) = arg max
Aj(n+1)

(min(CAj(n+1)
)

· (P(Aj(n+1) = 1|Ai(n))); ∀j. (4)

If two or more nodes have the same conditional probability and
if all their corresponding condition nodes are activated, Â(n+1)

is randomly selected among these nodes. If Â(n+1) = 0, the
system remains idle and no future action is selected.

C. Estimation of Prediction-Error Module

To estimate PE when Â(n+1) is predicted, two main compo-
nents are taken into account:

1) the conditional probability of Â(n+1), which is hereafter
noted PMax;

2) the difference between the delay TAi and the elapsed
time (called te) since the current node Ai(n) was acti-
vated.

PE is then measured as PMax discounted by a time depen-
dent function as follows:

PE = PMax · β · (1 − e(TAi−te)) (5)

where β = 0 when TAi ≥ te; else β = 1. β fixes PE = 0 when
the elapsed time is shorter than the average delay TAi of the
observed action Ai(n). Therefore PE starts to increase only as
te becomes greater than TAi(n)

. An example of PE estimation
is depicted in Fig. 3 where a primitive is observed but not
completed, leading to an increase of PE. PE is defined such
as its value increases if a predicted action is not achieved
within a certain amount of time. This definition is based on
psychological and neuroscience observations, and is simplified
to fit our experimental conditions.
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Fig. 3. Example of PE estimation. The system observes a primitive Ai(n) and
can predict the next action primitive Â(n+1). When the elapsed time becomes
greater than TAi , PE starts increasing. Finally, when PE passes the threshold,
the robot performs the predicted primitive to minimize PE.

D. Minimization of Prediction Error Module

The minimization of PE module generates actions to min-
imize PE. We hypothesize that observing others’ failure in
action execution would lead to the robot performing the pre-
dicted action primitive. If PE is greater than a threshold
(empirically fixed at 60% of PMax in our current experiments),
the PE minimization module executes the predicted primitive
Â(n+1) as an output of the system (see Fig. 3). For example,
when the system observes another individual trying and sub-
sequently failing to achieve an action (e.g., opening a Closed
Box), the minimization of PE will lead to the robot executing
the predicted action (e.g., the robot opening the Closed Box).
From the point of view of the other individual, this process
looks as if the robot helped the person even though it does
not have such an intention. We suggest that primal altruistic
behaviors emerge through the minimization of PE.

III. EXPERIMENT 1: SIMULATION

The first experiment aimed to validate our hypothesis and to
show that the minimization of PE could be used as behavioral
motivation to help others. Further, this experiment analyzed
the effects of our system’s experiences on the estimation
of PE. We decided to use a fully simulated environment to
remove any noise coming from the scene recognition module
and focus on studying the relevance of the action predic-
tion, PE estimation, and PE minimization modules. The scene
recognition used instead symbolic representations of actions
and conditions. In the following sections, we present the
detailed procedure of our experiment, the results, and a short
discussion.

A. Experimental Procedure

The experiment was separated in two phases: the train-
ing phase, during which the robot trained its sensory-motor
representation by performing series of actions; and the obser-
vation phase, during which the robot observed others’ actions
and tried to minimize PE. The actions used during our
experiment were inspired by the experiments performed by
Warneken and Tomassello [36], [37] in which they showed that
infants could help others trying to reach out-of-reach objects or
overcome obstacles (e.g., out-of-reached cloth pins, and closed
cabinet doors).

During the training phase, the system created an action
graph, as presented in Section II-B1. We trained the sys-
tem with several actions in a randomized order. During the

TABLE I
EXPERIMENT 1: SIX ACTIONS THE SYSTEM EXPERIENCED

TABLE II
EXPERIMENT 1: LIST OF OTHERS’ FAILED ACTIONS. THE PRIMITIVE

INTENDED BY OTHERS ARE NOT ACHIEVED

observation phase, a series of nonaccomplished actions was
presented to the system, during which PE was estimated. In
order to study the effects of the system’s action experiences on
its ability to estimate PE, the amount of experience given to
the system during the training was varied, from the execution
of one action to that of all the possible actions. We describe
the actions used in our experiment and the two phases of the
experiment below.

1) Actions: For this experiment, the system could expe-
rience six actions (Act1 to Act6) that are combinations of
eight different objects (Ball, Mug, Car, Switch, Opened Closet,
Closed Closet, Opened Box, and Closed Box) and six differ-
ent action primitives (Reach for, Grasp, Open, Put, Move, and
Flip). The actions the system experienced are described in
Table I. Act1 to Act4 contain Reach for a Ball and a Mug
because both objects are present in the environment. As we
assume that our system cannot identify which of the Ball or
the Mug is the target due to perception ambiguity caused by
their close positions, both objects are conditions for the Reach
for primitive.

2) Training and Observation Phases: During the training
phase, the robot experienced up to six different actions. All
action primitives were correctly performed. The actions were
designed so that the number of children and parents for the
different action nodes varies. In some cases, action nodes only
had one child and parent node; for instance in Act5, Reach
for a Car could only be followed by Move the Car. In con-
tract, some action nodes had several parent or child nodes; for
instance in Act1 to Act4, Reach for a Ball and a Mug could
be followed by Grasp the Ball or Grasp the Mug. Fig. 4 shows
an example of an action graph built after performing all the
actions presented in Table I.

During the observation phase, other individuals performed
seven uncompleted actions (F1–F7) listed in Table II. The
action primitives and objects used in actions F1–F7 were the
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Fig. 4. Experiment 1: example of action graphs for all possible actions Act1
to Act6 executed once. The red nodes denote conditions, and the black nodes
represent actions. The numbers inside the action nodes denote the number of
times the primitives were executed.

same as those used during the training. These actions could
be uncompleted for two reasons.

1) Out-of-Reach: Other individuals may fail to reach for an
object if it is too far from them. In this case, the next
primitives predicted after Reach for (e.g., Grasp) cannot
be observed (activated).

2) Physical Obstacle: Other individuals may fail to use or
interact with an object because of a physical constraint
(e.g., cannot open a box if the hands are occupied with
balls).

When observing others’ actions, our system tried to predict the
most likely next action primitives. Because some action nodes
had several child nodes, the prediction could be ambiguous.
For instance, if F3 was observed and if our system had pre-
viously experienced Act1 and Act3, both the primitive Grasp
the Ball and Grasp the Mug could be predicted. This is later
called prediction ambiguity.

B. Results

We trained our system for six different conditions, each with
a different number of actions performed during the training.
The number of actions performed was incremented from one
in the first condition, to six in the last. During the training the
order of action execution was randomized. We then tested our
system for seven different tasks in which another individual
performed uncompleted actions. For each trial, we observed
whether the system could successfully produce an action to

Fig. 5. Experiment 1: column plot representing our system’s Acted, Helped,
and Failed performances. The error bars represent the standard deviations.

minimize PE (hereafter denoted as Acted). If the Acted prim-
itive could help others in achieving their goals it was denoted
as Helped. If it did not help achieving the goal, the action
was categorized as Failed. In other words, a Failed primitive
is a behavior that successfully minimized PE estimated by the
system, but was not helpful from the other’s point of view.
The Failed cases were caused by different phenomena.

1) Recognition Ambiguity: If multiple objects are located
close to each other and are associated with a same action
primitive, which is currently activated, the system cannot
identify the target object of the ongoing action.

2) Prediction Ambiguity: If multiple action primitives are
experienced after a same action primitive (i.e., single
parent node connected to multiple child nodes), the sys-
tem cannot predict accurately which action primitive
should be executed next.

3) Perspective Difference: The action primitive performed
by the robot cannot always help others in accomplishing
their intended behavior due to the perspective difference
between the robot and others. For instance, when others
intend to Grasp a Mug, the robot performs the action
primitive Grasp the Mug after observing Reach for the
Mug to minimize PE. This resulted in the Mug in the
robot’s hand, but not in others’ hand.

Fig. 5 shows the Acted, Helped, and Failed performances of
our system as a function of the number of actions experienced.
The sum of Helped and Failed values represent 100% of the
Acted value (Acted = Helped + Failed). The results show
that the performance of our system improved as the number
of actions experienced increases. The Helped value got higher
than the chance level (16.67%) after experiencing three dif-
ferent actions. Some actions could be generalized better than
others as shown by the Acted values and the standard devia-
tions. Indeed, if only Act6 (see Table I) is experienced, only
actions involving the Switch can be recognized, but if only
Act1 is experienced, our system can make predictions for all
actions involving the Mug or the Ball.

C. Discussion of Experiment 1

Our first experiment showed that the minimization of PE
could possibly explain the motivation for infants to help others
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Fig. 6. Experiment 2: setting. The blue Car is shown on the right of the
robot, and the red Marker is presented on the left of the robot.

achieve unsuccessful actions. Furthermore, we demonstrated
that being able to recognize and to predict future action prim-
itives is required to estimate PE, which is consistent with
evidences presented in Section I.

In most cases, executing the predicted future action prim-
itives could help others achieve their actions. However, it
happened that even though PE was minimized, the robot’s
actions could not help others. As mentioned in Section III-B,
we observed three scenarios that could explain why our system
failed to help others: 1) recognition ambiguity; 2) prediction
ambiguity; and 3) perspective difference. The ambiguity errors
can be explained by the lack of training and generalization of
our model. On the other hand, the perspective taking issues
are more challenging to address and bring additional questions.
Indeed, infants seem to rarely get affected by any sort of per-
spective between them and the individual they are helping [35].
The mechanism allowing infants to cope with perspective dif-
ferences is not clear. Several possible solutions to this problem
will be presented in the general discussion.

IV. EXPERIMENT 2: HUMANOID ROBOT

The second experiment was designed to demonstrate
whether our system could exhibit similar altruistic behav-
ior in a more complex and noisy environment. Indeed, the
experiment was conducted in a real environment with human
participants who behave differently one to another and may
cause perception errors. We additionally introduced and tested
the scene recognition module using camera images, which was
not implemented during the first experiment. The following
sections present the system implementation, the experimental
procedure followed by the results and a short discussion.

A. System Implementation

For this experiment, we used a humanoid iCub robot (see
Fig. 6). This robot has 53 degrees of freedom, with seven in
each arm and five in the head. The head, the right arm, and
the left arm were used during our experiment.

The robotic system is presented in Fig. 6. The robot was
placed 0.1 m away from a 1-m-high table on which a black
mat was placed. Two objects (a toy Car and a Marker) were
positioned on the black mat at a reachable distance from the
robot’s arms. The object positioned on the left was manip-
ulated by the left arm, and conversely for the object on the

Fig. 7. Visual processing. (a) Raw image. (b) Extraction of all colors.
(c) Color extraction without skin color. (d) Object tracking. (e) Hand
recognition.

right. The objects had specific affordances: The car was move-
able but not hide-able; the Marker was not move-able but
hide-able. The robot was able to perform four action prim-
itives: 1) Reach From the Side; 2) Reach Straight; 3) Move;
and 4) Hide; the action primitives were executed using the
YARP Cartesian interface [25]. The primitives were combined
into two actions: 1) push (Reach From the Side and Move)
and 2) cover (Reach Straight and Hide). Below, we detail the
experiment specific definition of the scene recognition module
and the action graph.

1) Scene Recognition Module: The scene recognition uses
the RGB camera (640×480 pixels) placed in the robot left
eye to detect the objects and a human hand. The objects are
detected by combining pixels with similar color and (x, y)
position [see Fig. 7(a) and (b)]. We use a set of predefined
colors (e.g., blue or red) for the detection. The objects are then
tracked based on their position and average hue [see Fig. 7 (c)
and (d)] unless they are not visible for longer than two sec-
onds. The objects are categorized into three states depending
on their position history:

1) stationary: the object is stable in position;
2) moving: the distance traveled by the object during the

ongoing action (no time limit) reached 50 pixels;
3) occluded: the object is not detected for more than

500 ms and less than 2 s.
Action primitives are recognized by looking at the relative

position of the hand to the objects. The x and y coordinates of
the hand in the image are detected using the predefined skin
color like the object detection [see Fig. 7 (e)]. Our system can
recognize two types of reaching, either Reaching From the
Side if the hand is positioned on the side of the object in the x
axis or Reaching Straight if the hand is aligned with the object.

2) Action Graph: For this experiment, the actions per-
formed by the robot could result in no effect on the targeted
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TABLE III
EXPERIMENT 2: LIST OF ACTION PRIMITIVES, OBJECTS, AND

STATUS OF THEIR MEMORIZATION IN THE ACTION GRAPH

objects due to their specific affordances. To cope with this
issue, series of action primitives performed by the robot and
the corresponding condition nodes (objects) are memorized in
the graph if and only if the performed action modifies the
state of at least one object in the scene. For instance, Reach
From the Side for the Car and Move the Car would lead to
the car’s movement, and therefore the action is memorized. In
contrast, Reach From the Side for the Marker and Move the
Marker would have no effect on the Marker’s state, and thus
the action is not memorized.

B. Experimental Procedure

The experiment was divided into ten trials with five partic-
ipants, each composed of two phases: a training phase and an
observation phase. The participants were chosen from our lab-
oratory and were not familiar with this paper. The two phases
are further described below.

1) Training Phase: During the training phase, the robot
interacted with the objects presented in front of it. The robot
was instructed to either push or cover the objects on the left or
right side on the table. During each trial, the robot performed
all the four possible actions twice in a random order.

2) Observation Phase: During the observation phase, the
robot was placed in front of an participant and observed his
behavior. When the participant performed an action primitive
with an object, the node corresponding to the primitive in
the action graph was activated. The action prediction module
then predicted the next primitive to be executed. If the partic-
ipant failed in achieving the predicted action primitive within
a certain time, PE started to increase. If PE exceeded a fixed
threshold, a trigger signal was sent to the minimization of PE
module, which executed the predicted action primitive in order
to minimize PE.

C. Results

The results gathered during the training and the observation
phases for the ten trials are presented below.

1) Training Phase: The Car and the Marker were randomly
placed either on the left or the right side of the mat on the table.
During each trial, the robot performed all the actions presented
in Table III twice in a random order. Fig. 8 shows the robot
performing two actions learned by our system: 1) Reach From
the Side for the Car and Move the Car and 2) Reach Straight
for the Marker and Hide the Marker. When moving the car, the
state of the car switched from stationary to moving, and when
hiding the Marker, the Marker’s state switched from stationary
to occluded. The action graph after performing all four actions
is presented in Fig. 9.

Fig. 8. Experiment 2: a scene from the robot’s training. (a) Push the car.
(b) Cover the marker.

Fig. 9. Experiment 2: action graph after experiencing x times Reach From
the Side for and Move the Car, and y times Reach Straight for and Hide the
Marker.

2) Observation Phase: During the observation phase, the
robot observed participants trying to push or cover either the
Car or the Marker. All actions were performed once for each
trial. Fig. 10 shows the robot’s camera image capturing par-
ticipants’ actions and successfully estimating and minimizing
PE by executing the predicted action primitives. This figure
shows the following:

1) (a1, b1): The robot observes the participant and recog-
nizes the action primitives: Reach From the Side for (a1)
or Reach Straight for (b1). After observing these primi-
tives, the robot predicts the future action primitives Move
(a2) and Hide (b2).

2) (a2, b2): PE increases after our system predicts the
future action primitives and the elapsed time is greater
than the estimated delay.

3) (a3, b3): The robot performs the predicted action prim-
itives to minimize PE, namely Move the Car (a3) and
Hide (b3) the Marker.

After ten trials (training and observation), we measured the
following:

1) performed primitive: the action that the participant was
doing;

2) success rate: the amount of time the robot successfully
achieved the participant’s goal;

3) PE: the average PE at the moment of the robot’s primi-
tive onset (PE fixed threshold is 60% of the probability
of the next primitive);

4) delay: the elapsed time between the first detection of
the participant’s primitive and the onset of the robot’s
action.

These results are summarized in Table IV.
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Fig. 10. Experiment 2: this figure depicts the successful cases during which the robot minimized PE after observing an unachieved action. The black and
gray lines represent the distance between the human and the robot’s hand to the targeted object, respectively. The red filled line denotes the estimated PE,
and the dashed line indicates PE threshold above which the robot performs an action to minimize PE. Here, the robot successfully estimates and minimizes
PE. (a1, b1) Participant reaches for the blue Car and the red Marker, respectively. (a2, b2) Estimated PE reaches the threshold, and the robot starts its action
to try minimizing PE. (a3, b3) Robot’s action successfully minimizes PE.

TABLE IV
EXPERIMENT 2: EXPERIMENTAL RESULTS. PERFORMED PRIMITIVE: PRIMITIVE PERFORMED BY THE PARTICIPANTS. SUCCESS RATE: PERCENTAGE

OF TIMES THE ROBOT SUCCESSFULLY HELPED ACHIEVING AN ACTION. PE: AVERAGE MAXIMUM PREDICTION ERROR MEASURED BEFORE PE
MINIMIZATION. DELAY: TIME BETWEEN THE RECOGNITION OF PARTICIPANT’S PRIMITIVE AND THE ONSET OF THE ROBOT’S ACTION.

THE STANDARD DEVIATION IS CALCULATED FOR THE TEN TRIALS

The results show that the robot could reliably achieve the
predicted goals of the participants (success rate: 80% and
100%) within a relatively short five seconds delay (SD = 0.25
and SD = 0.40). This was only true if the observed actions
were previously experienced and had visible effects on the
associated objects during the training. It shows that the sys-
tem could cope with the noisy scene recognition and generate
actions to minimize PE. In fact, the robot failed once because
the participant removed his hand while PE was getting greater
than the threshold and tried to performed another action,
leading to the robot performing the previous action.

D. Discussion of Experiment 2

The second experiment intended to show if our system could
also exhibit altruistic behavior in more complex and noisy
environment while interacting with real participants. These
new conditions led to variable interaction patterns with the

robot. For instance, when asked to try reaching for an object,
some participants repeated several times the same primitives
to try enacting the robot’s action. In contrast, other partic-
ipants maintained their hand in the same position. These
different behaviors generated multiple PE estimation dynamics
throughout the experiment. Even with these new challenges,
the robot succeeded in helping others achieve their actions by
minimizing PE. The results support our hypothesis that the
minimization of PE can be used as a behavioral motivation
to help others. Finally, we believe that similar results can be
expected even with more actions and more objects as long as
the system can experience all the actions.

V. GENERAL DISCUSSION

The emergence of altruistic behavior in infants from 14
months of age is one of the key milestones of their pro-
social development. In past decades, several theories, such as
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the emotional-sharing models and the goal-alignment mod-
els, have been proposed to explain the evolution of altruistic
tendencies, but few of them clearly described the motiva-
tions and mechanisms allowing infants to help others. In
this paper, we attempted to explain the emergence of altru-
istic behavior in infants by proposing PE minimization as a
behavioral motivation. It can be argued that PE minimiza-
tion is not the only possible motivation for early altruism,
(see Sections I-A and I-B; [26]), but because of the general-
ity and central role of PE in the brain (see [13], [22]), we chose
to mainly focus on this mechanism. To then demonstrate our
hypothesis, we conducted two experiments to examine to what
extent PE minimization could provide a possible motivation
for the helping behavior.

Our first experiment analyzed the effect of the system’s own
action experiences on the recognition and the prediction of
others’ actions. We showed that in order to recognize others’
actions, the robot must experience similar behavior before-
hand. Then, as our system was unable to clearly differentiate
actions it performed and those performed by others, it executed
an action to reach the predicted goal when observing oth-
ers failing in achieving their goal. The behavior generated by
our system was, in some aspects, similar to the comportment
observed in infants in Warneken and Tomassello’s [36], [37]
experiments. Indeed, their experimental results showed that
14-month-old infants are good in helping “out-of-reach”
actions, where the others’ goals are easy to predict, whereas
only older infants could help in more complex and nontrans-
parent situations. Based on these evidences, our general claim
is that the ability to help others is strongly dependent on
the robot’s (or infant) experience with the involved actions.
Therefore, as the robot (or infant) acquires more experience
through the interaction with its environment, more extensive
helping behaviors will emerge.

In the second experiment, we integrated our model into the
iCub robot and showed that the robot could also generate
altruistic behavior. This result was not evident as the sec-
ond experiment with human participants brought a whole new
spectrum of challenges. Indeed, due to human variable interac-
tion patterns with the robot, the estimated PE was not always
stable and could have led to lower success rate. In addition,
using the robot’s camera images added noise to the detection
of objects and others’ action. Even with these new challenges,
the robot succeeded in generating action to help others in
achieving their actions. The results once more showed that the
minimization of PE could explain the emergence of altruistic
behavior.

Thanks to these two experiments, we confirmed our hypoth-
esis and proved that minimizing PE is a possible behavior
motivation to account for the emergence of altruistic behav-
ior. Such results can greatly contribute to the understanding of
the development of pro-social tendencies in infants, but also
help the creation of more social robots that can be used in our
household and in industry.

Despite these promising results, our experiments also
showed that the actions performed by our system to min-
imize PE were not always able to efficiently help others
in accomplishing their actions. Indeed, the prediction of the

future action primitive was sometimes incorrect, leading to
the robot’s inappropriate responses, or the prediction was
correct but the robot’s action failed to help others achiev-
ing their goal. An issue is that, due to the lack of self-
other differentiation in our system, the robot does not take
others’ perspective and executes the predicted action primi-
tive to minimize PE and achieve its own goal, regardless of
whether it helped the other achieving his goal. Some litera-
tures show that infants at 14- or 18-month-old are actually
able to help others even when the perspective difference
should affect their behavior (i.g., handing over an out-of-
reach object instead of keeping it) [35], [37]. In fact, infants
may change their visual perspective while observing oth-
ers performing actions. This cognitive ability is noted by
Tomassello et al. [34] as a sociocognitive need for infants’
altruistic behavior. Moll and Tomassello [21] showed that 24-
month-old infants required the perspective-taking ability in
order to help others achieve unsuccessful goal-directed actions.
However, self-other differentiation, which is needed to perform
such perspective-taking, is not yet acquired by 14-month-old
infants [21]. Another possible solution, which does not need
change in perspective, is to estimate PE in terms of states and
not in terms of actions. Instead of predicting the future action
primitive, our system will predict the impact of the observed
action on the environment, and minimizing PE would mean
achieving the predicted state. Some researches indeed showed
that infants first perform actions that help in achieving the
goal rather than imitating the means of an action with no pre-
dictable goal [8], [24]. Furthermore, it is strongly suggested
that infants, from the age of 3–5 months, can represent actions
in terms of goals, independent of the spatio-temporal proper-
ties of the target [33], which supports the idea of employing
state prediction over action prediction.

To find out how infants can help others in perspective depen-
dent situation, our future work will focus on demonstrating if
and how the perception and the prediction of the environmen-
tal states instead of others’ actions can improve the helping
performances of our robotic system. Also, we will examine
the effect of visual perspective taking, emerging in the second
year of life in infants, on the emergence of altruistic behavior
in our robot.
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