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Abstract—Collaborative robots are quickly gaining momentum
in real-world settings. This has motivated many new research
questions in human-robot collaboration. In this paper, we address
the questions of whether and when a robot should take initiative
during joint human-robot task execution. We develop a system
capable of autonomously tracking and performing table-top
object manipulation tasks with humans and we implement three
different initiative models to trigger robot actions. Human-
initiated help gives control of robot action timing to the user;
robot-initiated reactive help triggers robot assistance when it
detects that the user needs help; and robot-initiated proactive help
makes the robot help whenever it can. We performed a user study
(N=18) to compare these trigger mechanisms in terms of task
performance, usage characteristics, and subjective preference. We
found that people collaborate best with a proactive robot, yielding
better team fluency and high subjective ratings. However, they
prefer having control of when the robot should help, rather than
working with a reactive robot that only helps when it is needed.

I. INTRODUCTION

Task-oriented robots in homes, factories, and small busi-
nesses have the potential to improve productivity and quality
of everyday tasks while reducing the workload of humans.
However, many tasks in these environments involve difficult-
to-automate steps because they require dexterous manipulation
or a “human touch.” As a result, these tasks are best suited
for collaborative or joint execution with humans, taking best
advantage of the strengths of robots and humans. Although
such joint task executions come naturally to human-human
teams, achieving similar fluency and comfort in human-robot
teams poses many challenges.

Previous work has tackled many of these challenges. Some
of the main research threads have investigated ways to com-
pute robot action plans that improve joint task performance
while reducing the load on the human [1], tracking and
anticipating human motion to enable execution of such task
plans [2], [3], [4], and designing robot behaviors to improve
team effectiveness and fluency [5], [6]. While past work
provides useful insights into how a robot should help as part of
joint human-robot tasks, in this paper we focus on the question
of when a robot should help. In particular we investigate the
factor of initiative in robot assistance during task execution.
We ask two questions:

1) Should the robot take initiative or let the human control
the robot’s participation in the task?

2) When should the robot take initiative?
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robot helps human when 
help is requested

robot helps human reactively 
when it detects help is needed

robot helps human proactively
whenever it can help

Fig. 1. Different initiative models for robot assistance during collaborative
task executions: human-initiated help (left), robot-initiated reactive help (mid-
dle), and robot-initiated proactive help (right).

To address these questions, we investigate different mech-
anisms for triggering robot assistance in the context of joint
table-top manipulation tasks. We develop a joint task execution
system capable of autonomously performing a number of
object manipulation tasks as well as monitoring end-to-end
human task executions. We implement three trigger mecha-
nisms (Fig. 1): (i) human-initiated help which gives control
of robot action timing to the user, (ii) robot-initiated reactive
help in which assistance is triggered when the robot detects
that the user needs help, and (iii) robot-initiated proactive help
in which the robot helps whenever it can. We present findings
from a user study (N=18) in which participants performed
different tray preparation tasks in three conditions involving
the different assistance trigger mechanisms. The study demon-
strated that people collaborate best with a proactive robot in
terms of team fluency metrics and prefer the proactive help
over other conditions. They prefer the human-initiated help
over the reactive help, even though it results in higher human
idle times and slower task completion. Given control of when
the robot should help in this condition, they tend to divide the
tasks equally between themselves and the robot, similar to the
division that emerges with the proactive robot.

II. RELATED WORK

A. Human-Robot Collaboration

In recent years, collaborative robots designed to work side-
by-side with humans have gained momentum in real-world
settings. This has fueled a large body of research on human-
robot collaboration. One of the core research threads tackles
the problem of task planning for joint human-robot tasks.
Among others, Shah et al. generates a robot action plan so
as to minimize human-idle time [7]. Hayes and Scaselatti
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developed a collaboration planner that reduces cognitive and
physical load on the human [1]. Another vein of research
focuses on low-level motion planning for the robot within a
collaborative context [5], [8], [9], [10], with an eye towards
improving team fluency and the user’s sense of safety.

Researchers have studied other low-level behaviors, besides
robot motion, that impact collaboration and enable coordi-
nation of actions during task execution [11]. For example,
St.Clair and Mataric demonstrated that robot verbal feed-
back improves team performance [12]. Awais et al. proposed
mechanisms to mitigate breakdowns in the joint tasks [13].
Others focus on the coordination of micro-interactions that
occur during collaboration, such as object hand-overs, using
gaze [14] or adapting timing of motions to the human’s state
[15]. Chao and Thomaz developed mechanisms to coordinate
sharing of common resources during collaboration, such as the
speaking floor or part of the workspace that both the human
and the robot need to access [6].

Besides generation of robot behaviors, another key problem
in human-robot collaboration is perception of the human.
Preliminary work by Hoffman and Breazeal suggests that
anticipatory perceptual simulation improves efficiency and
fluency in teamwork [2], [16]. With the help of new sensing
and human tracking technologies, many others followed with
models of action or motion anticipation in the context of
human-robot collaboration [17], [13], [18], [19].

As mentioned in Sec. I, this paper focuses on the question
of initiative about when a robot should help. We note that joint
human-robot task planning implicitly addresses the question of
when a robot should help by producing a plan that specifies
the order and timing of human and robot actions. The key
difference of the scenario considered in our work is that we do
not assume pre-planning of the task prior to execution. Rather,
the allocation of task components occur during task execution
depending on both the human’s and the robot’s behaviors.

B. Robot Assistance and Help

Given our emphasis on in-situ, ad-hoc collaboration, rather
than planned collaboration, previous work on robot help is
highly relevant. In fact, many of these relate to one or more of
the different help behaviors studied in this paper. For example,
Kwon et al. ’s work [20] is akin to our robot-initiated proactive
help. Cuntoor et al. consider human instruction as part of the
collaboration [21], similar to our human-initiated help condi-
tion. Najmaei and Kermani’s prediction-based reactive control
model for collaboration [22] is akin to our robot-initiated
reactive help. Sakita et al. design different robot assistance
behaviors triggered in different conditions; such as taking over
when the human’s both hands are occupied or providing verbal
disambiguation when the user’s hesitation is detected [23].
Similarly, Baraglia and Nagai proposed a developmentally
motivated behavior in which the robot intervenes to help when
it detects that effects of a human’s action were not as predicted,
i.e., the human action failed [24].

C. Initiative in Human-Robot Interaction

In the context of human-robot collaboration, one study
by Gombolay et al. is particularly relevant. They investigate
decision-making authority in the planning process and find that
people are willing to give control to the robot for the efficiency
benefits [25]. While our results are consistent with theirs, our
study differs in its focus on authority over assistance timing
during task execution, as opposed to authority over assistance
allocation during task planning. Groten et al. looked at shared
decision making in the context of haptic collaborations [26].
Cakmak et al. investigated initiative in robot question asking
[27]. In addition, the large body of work on mixed-initiative
control in the context of robot teleoperation [28] has some
relevance to our work.

III. SYSTEM

To study different help trigger mechanisms, we develop an
end-to-end system for joint task execution that allows a robot
to perform object manipulation actions as well as monitor the
execution of the same actions by a human. In this section we
present the details of our system.

A. Platform

Our system is built around the PR2 robot platform (Fig. 1).
PR2 has two 7 degrees-of-freedom arms giving it a large
workable space for tabletop manipulation tasks. Each arm
has 1 degree-of-freedom parallel-finger gripper that can grasp
objects up to a width of 8cm. PR2’s arms are passively
balanced and actuated with low-power motors, making it safe
to work around humans. For perception, it has a Kinect sensor
attached to the head that has a high-speed pan and tilt motion.
Note that most of the system was designed independently of
the platform while the action execution part was designed for
and with the PR2.

B. Domain and Task Representation

We focus on joint preparation tasks. This category of
tasks shares many properties of tasks previously studied in
the context of human-robot collaboration (e.g., circuit build-
ing [1], lego model assembly [23], food preparation [5],
industrial assembly [4]), including partially ordered action
sequencing and shared physical space. More specifically,
we consider food tray preparation with n objects, m tray
locations and three non-overlapping table regions. Objects
can be uniquely recognized and their location is represented
as a 2D coordinate on the table. We also represent rela-
tions among objects and targets with the three predicates
is-on(object, object), is-at(object, location),
and is-in(object, region). Note that is-on(object,
object) is detected directly through the perception module,
while the two other predicates are inferred based on the task
knowledge. The table is split into three regions based on
who is allowed to manipulate: robot-only (near robot), human-
only (near human), and both-allowed (middle). Task goals are
represented as a conjunction of instantiated predicates; i.e., the
set of relations that need to be true.



a
b c

e

d
f

L1 L2

a b c d
L1 L2 L3 L4

(a)

Task A

Task B

(b)

Fig. 2. (a) Goal states for the two task categories used in our evaluation.
(b) Pictorial description of a sample task instance (category Task B), used for
explaining the task to participants in the user study.

Our experiments involve six specific tasks from two task
categories (Tasks A and B) in slightly different domains. All
tasks in the same task category have the same set of predicates
in their initial state and goal descriptions; however specific
tasks differ in the particular objects and locations with which
the task is instantiated. Task A involves four objects to be
placed in four target locations on the tray. Task B involves six
objects to be arranged on two locations on the tray. The two
task categories are described in Fig. 2a and individual task
instances are shown in Fig. 4.

Both the human and the robot are assumed to have one task-
relevant action: pick-and-place(object, x, y). The
x and y coordinates can be anywhere on the table, including
particular tray locations or on other objects. The action is
applicable for an agent (human or robot) only on objects
whose current location is within the regions allowed to the
agent. In our task scenarios, one object is initially placed in
the robot-only region for both tasks; two objects are placed in
the human-only region for Task B.

C. Robot Perception and Actions

The robot can segment and recognize tabletop objects using
the point cloud obtained from the robot’s RGBD sensor.
It uses the Point Cloud Library implementation of tabletop
segmentation, which detects the table plane with the RANSAC
algorithm. It then extracts a point cloud segment corresponding
to each object on the table. If an object is inside or in contact
with another object, they are segmented as one object with
possibly multiple colors. The robot represents and recognizes
objects based on their color and size extracted from the
segmented point cloud. Color is discretized into six values
and size in three values.

The robot’s pick-and-place action is parametrized with an
object to be picked and a location at which the objects is to be
placed. The action is defined as a sequence of poses relative to
the object (pre-grasp, grasp, and lift poses) followed by poses
relative to the target location (transfer, lower, and drop poses).
While the overall action template remains the same, some of
the poses in the action are tuned to the particular object being
manipulated.

D. Joint Task Execution Model

The overall system for joint task execution is illustrated in
Fig. 3. At the core of this system are two modules for (i)
tracking the state of the task and anticipating future actions,
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Action
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Fig. 3. Model for helping robots: recognizes the current environmental state,
predicts the possible future states using a dynamic Bayesian network and
generates actions to achieve the desired end-states.

and (ii) selecting a robot action based on the observed and
anticipated states accreting to different help strategies. A more
detailed description of these modules is given in the following.

1) Task state prediction module: Our system uses Dynamic
Bayesian Networks (DBN) to predict future states and robot
actions that lead to those states. DBNs are multi-time-slice
Bayesian networks where variables are connected to one
another over adjacent time steps as well as within the same
time step. They are computationally efficient generalization of
hidden Markov models and have been used to model multi-
modal robot behavior in uncertain environments (e.g., [29]).

For this study, each time slice of the DBN contains a
state and an action node, corresponding to two multinomial
discrete random variables S and A. S can be one of all
possible states {s0, s1, ..., sN} that are distinct according to
the defined predicates for a finite set of objects and named
locations (Sec. III-B). In other words, two states in which
an object’s position is different but both positions are not at a
named location (e.g., is-at(object1, location1)=F)
are considered the same discrete state. The variable A is one
of all possible action instances {a0, a1, ..., aM} that involve
the combination of all objects and named locations in the
environment, regardless of whether they are available to the
human or the robot. S0 represents the current observed state of
the environment and St the predicted state at time t. Within
a single time slice, the state influences the action. Between
consecutive time slices, the state and action from the previous
state, St and At, influence the next state St+1.

The DBN encodes the task knowledge in the conditional
probabilities P (At|St) which represent an action policy that
the robot could use if it were to execute the task on its own.
Since the tasks are known a priori in our scenario, these
conditional probabilities were computed based on the known
task structure (Sec. III-B), assuming each path for complet-
ing the task is equally likely. The conditional probabilities
P (St+1|St, At) encode the environment and action dynamics
and were determined empirically. Future states and actions are
predicted by computing the marginal probabilities P (At) and
P (St) using Bayesian inference. The predictions are then sent
to the action selection module.



2) Action selection module: The action selection module
implements a policy that specifies what the robot should do at
each time step. If the robot were to execute the task completely
on its own, this module would directly return one of the
possible actions predicted by the DBN immediately after every
action. During joint task execution, on the other hand, the
robot’s policy needs to account for the human’s direct input
or their actions that result in changes in the world state. We
implement three policies that differ in terms of when a robot
action is triggered.

• Human-initiated Help (H): The first policy gives com-
plete control of robot actions to the user. The robot
performs an action only when the user explicitly says
“Robot, can you help me?”

• Robot-initiated Reactive Help (R): In the second policy,
robot actions are initiated by the robot when it detects
that help is needed. The robot monitors the human’s task
execution and tries to detect when one of the next states
predicted by the DBN is not reached within an expected
time window, indicating a delay or difficulty in the task
progress.

• Robot-initiated Proactive Help (P): The third policy
involves performing actions whenever they are possible.
However, different from a robot-only task execution, the
robot takes into account human actions that might be in
progress before a stable environmental state is reached. If
at least one executable action exists that does not conflict
with the human actions, the trigger is initiated.

When a robot action has been triggered, the robot selects the
specific action to perform based on the state of the environment
according to its task execution policy encoded by the DBN.
Given alternative actions with the same utility, the robot
prefers actions that involve objects and targets that are closest
to one of the robot’s grippers (right or left). The robot always
uses the nearest gripper to manipulate objects.

IV. USER STUDY

The help trigger mechanisms described in Sec. III-D2 are
expected to yield different joint task execution dynamics.
Furthermore, each mechanism on its own can result in a wide
variety of behaviors depending on the particular user. For
example, when interacting with the human-initiated policy,
users may request help at every step or only when they need
it. When interacting with the robot-initiated proactive policy,
they might select their own actions such that the robot has
many opportunities to help or they might (unintentionally or
intentionally) block the robot’s actions. The differences across
and within each policy can reflect on objective task execution
measures, as well as the user’s subjective attitude towards the
robot. To investigate these differences, we performed a user
study that allows us to (i) characterize people’s behaviors while
interacting with each policy, and (ii) compare the alternative
policies for triggering robot help.

A. Study design

We performed a within participants study with one inde-
pendent variable (robot helping behavior) with three condi-
tions: H, R, P (Sec. III-D2). In each condition, participants
performed two tasks with the robot, one from each category
(Task A and B). The order of the three conditions were
counterbalanced.

B. Setup

The robot was placed in front of a 68cm high table. Partic-
ipants sat across the table. The table top was separated into
three zones as shown in Fig. 4. Participants were asked not to
touch objects that are in the red zone (near the robot). Similarly
the robot could not enter the blue zone (near the human). Both
were allowed to manipulate objects in the middle zone. In the
middle of the table there was a tray with four target positions.

Tasks were explained to participants with a one page pic-
torial description involving (i) the set of objects and targets
involved in the task and (ii) the final state of the tray when
the task is complete. An example task description is shown
in Fig. 2b. An additional small table was placed to the right
of the participant. Printed task descriptions were placed on
this table, together with a tablet for logging task steps (see
Sec. IV-C) and a laptop for responding to our questionnaire.
The complete setup can be seen in Fig. 1.

C. Procedure

Participants were recruited from a campus and nearby
neighborhoods through mailing lists. Interested individuals
signed up for a 45 minutes time slot in advance. When
participants arrived at their scheduled study time, we first
explained the purpose of the study and asked them to sign
a consent form. Then they were taken to the participants
seat, introduced to the robot and the workspace, and given
an overview of the procedure.

Next, the robot was activated and participants performed a
practice task (Fig. 4a). They were explained what the task is
using the corresponding pictorial description. The robot made
a specific sound to indicate that it was ready. Participants were
told that they can start the task when they hear this sound. They
were told to perform one step of the task and then log the step
on the tablet. The logging was done throughout the study as a
mechanism to space human actions apart and give the robot an
opportunity to detect intermediate states of the task. Each log
required indicating who performed the step (human or robot),
the two letter identifier for the object involved (as indicated in
the task description), and the one letter identifier for the target
position where the object was placed. The second step of the
task was performed by the robot to familiarize participants
with the robot’s motion. The robot made another sounds when
it detected the task completion. Participants were told that they
will perform similar tasks together with the robot in three
conditions where the robot’s behavior will be different.

Next we moved on to the actual study. For each condition,
the experimenter first gave condition specific instructions. In
the human-initiated help (H) condition, participants were told
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Fig. 4. Particular instances of the tasks used in the user study: (a) practice task, (b-d) three instances of Task A, and (e-g) three instances of Task B performed
by participants in the three different conditions.

that they can request the robot’s help by saying “Robot, can
you help me?” In the other conditions (R and P), they were
told that the robot will decide when and how to help out with
the task. Then the experimenter set up the initial state of the
first task, told participants to start when they hear the robot
sound, and left them alone with the robot. The experimenter
came back to set up the next task after the robot detected
that the task was complete. After completing both tasks in
the same condition, participants were asked to respond to
the condition-specific questionnaire. After all three conditions
were complete, participants responded to additional questions
drawing comparisons between the three conditions. At the
end participants were thanked for participating and given the
promised compensation of 10 USD equivalent gift card.

D. Measurements

The study was recorded from two cameras; one mounted
on the robot’s head and another overseeing the workspace
together with the robot and the participant. In addition,
we logged the progression of tasks and robot actions with
timestamps throughout the study. From the study logs we
extracted the task completion time and the number of actions
performed by each agent. From the videos we extracted
quantitative measure that characterized each participant and
the robot behaviors. The coding was performed by two coders
(IRR1= 0.72), including one without prior knowledge of the
study.

To compare the three conditions subjectively from the user’s
perspective, we administered several questions after each con-
dition as well as at the end. First we asked an open ended
question to elicit the participants own description of the robot’s
assistance behavior. Another question asked them to describe
their strategy. Then we asked a set of Likert scale questions,
similar to those commonly used in human-robot collaboration
research [30]. These questions addressed the user’s perception
of: the robot’s helpfulness, its awareness of the human and
task progress, its contribution to the task, team fluency and
efficiency, and naturalness of the interaction (see questions
in Fig. 7). Additional questions at the end asked a forced
ranking of the three conditions and open ended questions
about perceived distinction between the two robot-initiated
conditions and how different behaviors would be combined
in an ideal interaction.

1Cohen’s kappa.
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Fig. 5. (a) Number of actions performed by the robot for each task category
in each condition. (b) Task completion time for each task category in each
condition. Error bars represent standard deviation.

V. FINDINGS

Our study was completed by 18 participants (9 females, 9
males, ages 18 to 35). This section presents our findings based
on data collected from these participants. A one-way ANOVA
was conducted to compare the effect of conditions H, R and
P on the different objective metrics. We performed post-hoc
tests (two-tailed paired-t-test) to explore differences between
pairs of conditions.

A. Objective metrics

We first examine common task and collaboration metrics.
Fig. 5a shows the average number of task actions performed
by the robot in each condition (Task A: F (2, 51) = 15.35, p <
.001; Task B: F (2, 51) = 13.24, p < .001) and Fig. 5b shows
the overall task completion times by the human-robot team
(Task A: F (2, 51) = 2.20, p = .12; Task B: F (2, 51) =
6.15, p < .005). Fig. 6(a-d) show the breakdown of task
completion times into robot-only, human-only, concurrent, and
no motion segments and Fig. 6(e-f) separately show the human
idle time and robot idle time. The results of the ANOVA
for results in Fig. 6 are as follows: (a): (Task A:F (2, 51) =
7.64, p < .005; Task B: F (2, 51) = 12.62, p < .001); (b):
(Task A: F (2, 51) = 10.51, p < .001; Task B: F (2, 51) =
0.61, p = .55); (c): (Task A: F (2, 51) = 4.41, p < .05; Task
B: F (2, 51) = 2.79, p = .07); (d): (Task A: F (2, 51) =
4.78, p < .05; Task B: F (2, 51) = 6.97, p < .005); (e):
(Task A: F (2, 51) = 2.73, p = .070; Task B: F (2, 51) =
9.22, p < .001); (f): (Task A: F (2, 51) = 5.32, p < .01; Task
B: F (2, 51) = 5.61, p < .01).

1) Proactive versus Reactive: First we focus on the com-
parison of robot-initiated help strategies. Proactive help results
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Fig. 6. Breakdown of task completion times into (a) robot-only, (b) human-
only, (b) concurrent, and (d) no motion time segments. These include only
motion related to the joint task. (e) Human idle time. This excludes the time
during which the human is performing their secondary task of logging task
actions. (f) Robot idle time.

in the robot having a greater contribution to the task, as indi-
cated by the significantly higher number of actions performed
by the robot (Task A: p < .001, Task B: p < .001) (Fig. 5a).
This is also reflected in the significantly lower robot idle times
for the proactive robot (P) as compared to the reactive robot
(R) (Task A: p < .001, Task B: p < .05) (Fig. 6f). The
average number of actions performed by the reactive robot
was around 1 (Task A: M = 1.17, SD = .38, Task B:
M = 1.56, SD = .76), which is the minimum number of
actions required by the robot. Whereas, the proactive robot
performed around 2 (Task A) and 3 (Task B) actions (Task A:
M = 2.17, SD = .48, Task B: M = 3.00, SD = .82), which
are about half of the actions needed to complete the task. This
finding is expected and confirms that our model produced the
intended behavior.

Despite the difference in the number of robot actions, there
was no significant difference in the total task durations in
Task A (Task A: p = .12) and little difference in task B.
A potential reason for this could be lack of parallelization
between human and robot actions. However, the significant
increase in the concurrent human-robot motion (Fig. 6c) in
the proactive condition indicates that parallelization did indeed
happen at least in Task A (Task A: p < .005). In addition, the
total task durations appeared to be greatly influenced by the
difference in human and robot action speeds as humans are
several orders of magnitude faster at pick-and-place actions.
Hence they were not slower in completing the overall task

in the reactive condition. Despite this difference, human idle
times were not significantly higher in the proactive robot
condition (P) (Fig. 6e).

2) Human-initiated versus Robot-initiated: Next, we look
at comparisons between the human-initiated help (H) condition
and robot-initiated help conditions to characterize how people
chose to get help from the robot when they had control. From
Fig. 5a, we see that the number of actions performed by the
robot in the H condition was about half of all task actions, as in
the P condition. The number of actions performed by the robot
was significantly higher than in the R condition (H-R - Task A:
p < .001, Task B: p < .001). It resulted in significantly higher
concurrent motions in Task A for the H condition compared to
the R conditions (H-R - Task A: p < .05) (Fig. 6c). We believe
that it is because participants asked for help and then started
doing their own actions as soon as they understood the robot’s
intention. This is similar to the P condition, where participants
briefly waited until they recognized what the robot was doing
and then acted. The added waiting time in the H condition was
reflected in overall task completion times (Fig. 5b), which was
significantly higher than in the R condition for Task B (H-R
- Task B: p < .005) and in the P condition for both tasks
(H-P - Task A: p < .05, Task B: p < .05). This was also
reflected in the human idle times (Fig. 6e) which was highest
for the H condition in both tasks (H-R - Task A: p = .27,
Task B: p < .001; H-P - Task A: p < .05, Task B: p < .01).
We noticed that one participant made the robot do all actions
for Task 1; two participants made the robot do all possible
actions for Task 2 in the H condition. This contributed to the
high human idle time and task completion time, while making
the variance in this condition high.

B. Subjective metrics

Participant responses to the Likert-scale questions are sum-
marized in Fig. 7. The inter-condition differences were an-
alyzed using the Wilcoxon signed rank test2, which is a
standardly used non-parametric test. As suggested in [31]
and to avoid family-wise errors, we grouped the seven scales
into two sub-scales representing the quality of interaction
(Fig. 7a) and the system performance (Fig. 7b). There were
no statistically significant differences between the human-
initiated help (H) and proactive robot (P) conditions in any of
the sub-scales, despite the differences observed in objective
metrics (e.g., the task completion time shown in Fig. 5b)
between these two conditions. Subjective ratings of the quality
of interaction appeared to be correlated with the number of
actions performed by the robot (Fig. 5a), rather than the overall
task efficiency (Fig. 5b). The reactive robot (R) condition
was rated significantly lower than the other two (H and P)
conditions, indicating that participants agreed significantly
more that the quality was better in the H and P conditions (see
Fig. 7a). Whereas the significant differences were observed in
the quality of interaction, participants did not rate differently
the system performance. It seems they did not attribute the

2We also conducted parametric tests and obtained similar results.



The robot was able to accurately perceive my 
actions

The robot was able to keep track of the task 
progress

The robot was helpful in accomplishing the task

The robot and I contributed equally to the 
completion of the tasks

The robot and I worked fluently together

The robot and I worked efficiently together

The collaboration felt natural
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 (b) System performance
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Fig. 7. Mean Likert-scale ratings in questionnaire responses. Significant
differences according to Wilcoxon signed rank tests are indicated with p-
value ranges.

robot’s behavior in the R condition to its inability to perceive
the human or keep track of task progress. In the forced ranking
question administered at the very end of the study, 72% of par-
ticipants (13/18) indicated P as their most preferred behavior,
while 22% (4/18) indicated H and only 6% (1/18) indicated R.
78% of participants (14/18) indicated R as their least preferred
behavior, with 17% (3/18) for H and 6% (1/18) for P. The
question yielded a clear ranking of the three conditions as P
> H > R from most preferred to least preferred. Furthermore,
in a separate two-choice questions, 67% of participants (12/18)
indicated they prefer letting the robot take initiative, while the
remaining 33% said they preferred having control over the
robot’s actions. These results demonstrate that although there
were no significant differences between the H and P conditions
in the Likert-scale ratings, people are more likely to prefer P
over H in favor of the improved objective metrics (Sec. V-A).

C. Perceived differences of robot strategies

An open-ended question asked participants to describe the
differences between the two conditions R and P in which the
robot decided when to act, if they noticed any difference at
all. All participants reported that they noticed a difference.
The reactive robot was perceived as “slow” and characterized
as “lazy” and “hesitant” by some of the participants. The
proactive robot, on the other hand, was perceived “fast” and
“pro-active”. Descriptions of the perceived robot behaviors
were accurate; for example:

• M, 35: “... [P] felt more natural to have unprompted
collaboration while I was performing the task, rather than
the robot waiting for me to finish as it did during [R].”

• M, 20: “[P] was more proactive in its help ... [R], by
contrast, would only complete actions that I was unable
to complete.”

• M, 22: “[In P] the robot took the initiative a lot more
than [R]”
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Fig. 8. Occurrences of parallelization of the human’s secondary task (logging)
with the primary task (tray preparation task) being performed by the robot.

D. Collaboration enhancing human behaviors

The differences in the objective and subjective task metrics
can be further dissected by examining the occurrence of certain
events. Firstly, as mentioned earlier, concurrent motion was
significantly higher in the P and H conditions for Task A
(Fig. 6c), which shows better team work took place in these
conditions. Secondly, we observed another type of collabo-
ration, which is participants tended to perform the logging
task when the robot was performing an action on the tray as
pictured in Fig. 8a (Task A: F (2, 51) = 5.88, p < .01; Task B:
F (2, 51) = 1.03, p < .36). We observed higher occurrences
of this type of parallelizations in condition P and H compared
to R in Task A (H-R - Task A: p < .05, Task B: p = .83, H-P
- Task A: p = .18, Task B: p = .25, R-P - Task A: p < .005,
Task B: p = .26) (see Fig. 8b). Thirdly, we observed that
people intuitively encouraged collaboration by often starting
tasks with objects that were in the human-only region of the
table. Participant descriptions of their strategies, in a free form
question in the questionnaire, reflected their intent to enhance
the collaboration; for example:

• F, 22: “[In R] I chose objects closest to me or that were
obscuring the place of the objects needed to be. I also
moved slower that I would without the robot to give it
time to help.”

• M, 19: “[In P] I moved objects from the blue zone into
the collaboration zone, and placed objects in-between
logging and [the robot’s] actions.”

VI. DISCUSSION

Our study demonstrated that the behavior of the proactive
robot was similar to the behavior people asserted when they
had control over the robot’s actions. In turn, the similar high
subjective rating of the proactive and the human-controlled
robots could be partially ascribed to this similarity. Fur-
thermore, we believe that the behavior that was common
in these two conditions is similar to how a human would
collaborate in the same role. Indeed, participants thought that
the collaboration was most natural.

On the question of whether a robot should take initiative,
our results demonstrate that the answer depends on the robot’s
behavior. People were happy to give away control if the robot
is proactive, but they would rather have control if the robot is
reactive. Given its other benefits in terms of objective task and



team metrics, this suggests that collaborative robots should be
designed to always be proactive. In practice, this might not
always be possible. Challenges such as partial task knowledge
and uncertain perception might reduce the robot’s ability to
help the user when it is actually possible for it to help.
While the simplistic help request used in our experiments
would not be sufficient, enabling users to ask for particular
types of help by commanding actions could result in more
effective collaboration in such circumstances. Thus, the overall
implication of our study is that mixed-initiative help triggers
might be ideal for collaborations in realistic settings. We also
believe that increasing proactivity over time, after observing
the user’s collaboration preferences (e.g., [4]) might further
improve the collaboration.

VII. CONCLUSION

We address the questions of whether and when a robot
should take initiative during joint human-robot task execution
by comparing three initiative models to trigger robot actions:
human-initiated help, robot-initiated reactive help, and robot-
initiated proactive help. Through a user study (N=18) we
demonstrate that people collaborate best with a proactive
robot, yielding better team fluency and high subjective ratings.
While they are willing to give control of initiative to a
proactive robot, they prefer having control rather than working
with a reactive robot that only helps when it is needed.
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