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Abstract—Recent studies in psychology revealed that the
emergence of infants’ ability to predict others’ action goals
is correlated with the development of their motor ability to
produce similar actions. In this regard, studies in neuroscience
suggest that perception and production of actions share the
same neural architecture (i.e., mirror neuron system). However,
it is not yet clear what learning mechanisms are involved
in the co-development of these abilities. Here we proposed a
computational model to explain the development of prediction
of others’ action goals in synchronization with the development
of action production. We adopted the concept of predictive
learning of sensorimotor information as the key mechanism for
it. Predictive learning intends to associate motor signals with
sensory signals in a predictive manner during action executions.
Thus, sensory signals perceived during action observations induce
corresponding motor signals obtained in previous experiences.
Our experimental results showed that our approach facilitated a
robot to develop the ability to predict action goals in synchrony
with the development of action production. Furthermore, our
experiments demonstrated that the integration of goal-directed
motor signals improved the accuracy to predict sensory signals
and consequently action goals.

I. INTRODUCTION

Humans engage in social relations which demand complex
cognitive skills. One of those fundamental skills is the ability
to understand intentions in the actions of other individuals.
However, how humans acquire this ability remains an open
question. Research studies dealing with this issue have in-
troduced experimental paradigms to bring insight into the
phenomena of action understanding [1]. Pioneering studies
in psychology designed a paradigm of looking-time measures
to investigate when and how infants start getting involved in
goal-directed actions. The paradigm of looking-time measures
consists of two steps: First, habituating infants to a certain
action by presenting it repeatedly; and second, investigating
whether infants’ attention recovers in response to a change
in the action either by a new goal or by a new means. A
remarkable work conducted by Woodward [2] demonstrated
that infants distinguish and process goals and means of human
actions in a differentiated manner. Their experiments showed
that, after habituation, infants exhibited a stronger novelty
response to test events that varied the goal (e.g., the grasped
object) than to events that varied the physical properties of
the action (e.g., the motion path). Sommerville et al. [3]
evaluated young infants’ response to changes by employing

Fig. 1: Production of own actions and observation of others’
actions mediated by sensorimotor predictive learning.

a similar approach as in [2]. However, in contrast to [2], they
divided infants into two groups. The infants in one group were
allowed to experience object manipulation by themselves prior
to visual habituation, while the infants in the other group
were not. Their experiments indicated that only the infants
with prior action experience exhibited differentiated responses
to the new goal and new means events. Subsequent studies
introduced a paradigm of anticipatory looking measures to
investigate infants’ ability to predict goal-directed actions. In
that paradigm infants’ eye movements are tracked in order to
measure which object infants expect a person to grasp, and
which path they expect a moving agent to take [1]. Kanakogi
and Itakura [4] provided important evidence in relation to
the developmental link between action prediction and action
production. Their results demonstrated that infants’ ability
to predict reaching actions develops in synchrony with the
development of their motor skills to produce similar actions.

Studies in neuroscience have focused on a special class
of brain cells, namely mirror neuron system (MNS), that
were found to activate both when producing own actions and
when observing similar actions executed by another individual.
Studies by Pellegrino et al. [5] and Gallese et al. [6] showed
that there exists a relation between observed actions that these
brain cells respond to and motor signals they code. This indi-
cates that perception and production of actions share the same
neural architecture. In line with this, the MNS in monkeys
has been reported to be involved in cognitive processes like
action understanding [7] and intention understanding [8]. In
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humans, the MNS was suggested to play a similar role in
action understanding [7].

Numerous studies in computer science have focused on
the concept of internal models to account for human motor
abilities [9]. Internal models are neural mechanisms consisting
of complex structures of forward and inverse models. The
forward models predict sensory consequences associated with
executed motor commands. The inverse models produce the
motor commands required for achieving a desired sensory
state. Accordingly, models with similar characteristics to the
MNS have been proposed by coupling inverse and forward
models [10] [11] [12]. These models have been adopted in
robotics to study cognition [13]. Ogata et al. [14] and Demiris
and Khadhouri [15] showed that reusing own forward-inverse
models (i.e., own sensorimotor experience) when observing
others was effective for imitation tasks. Baraglia et al. [16]
proposed a model to explain how action production alters ac-
tion perception. However, none of these studies have provided
insight on the co-development of action prediction and action
production as reported in [4].

We aim to model the development of prediction of oth-
ers’ action goals in synchronization with the development
of action production. We adopt the concept of predictive
learning of sensorimotor information as the key mechanism for
the co-development. The concept of predictive learning [17]
establishes that a predictor learns sensorimotor information
when an agent produces own actions, and that the same
predictor estimates sensorimotor information when the agent
observes actions performed by others (see Fig. 1). A challenge
here is that when observing others’ actions (bottom), the
agent perceives only sensory signals (e.g., vision) and the
corresponding motor signals are missing. Of importance here
is that the predictor can be employed to retrieve the missing
signals by recalling the sensorimotor experience of own-
produced actions. As a result, the experience of producing
actions facilitates more accurate prediction of others’ actions.
We implement a computational model based on this idea
and replicate the experiment by Kanakogi and Itakura [4].
Experiments are conducted to first analyze the co-development
of prediction of others’ action goals and action production, and
then to assess the influence of integrating motor information
on the development of goal prediction.

II. KEY IDEA AND COMPUTATIONAL MODEL

A. Scenario and key idea

We assume an experimental scenario using a robotic plat-
form as shown in the right side of Fig. 2. The task for the robot
is to acquire the ability to predict the goal of others’ actions
(e.g., reaching) while it learns to produce the same actions. In
the phase of action production, the robot learns sensorimotor
signals (e.g., visual V, tactile T and motor J) as shown in
Fig. 2(a). In the phase of action observation (Fig. 2(b)), the
robot makes predictions of others’ actions based only on the
perceived sensory signals (e.g., visual V). A challenge here is
the limited information that is perceived by the robot during
the action observation, which makes the prediction difficult.

(a) Action Production

(b) Action Observation

Fig. 2: Computational model for action production and action
prediction based on sensorimotor predictive learning. (a) A
robot learns to reach for objects. The dotted line represents the
error between the predicted data for t+1 and the actual data at
t+ 1, which is fed back to the neural network. Through min-
imizing the prediction error, the system learns sensorimotor
information that later can be used to predict others’ actions. (b)
The robot (self) observes others’ reaching actions. The colored
dotted lines represent the feedback of predicted signals used
to predict future signals through imaginary simulations.

To tackle this problem, we adopt the concept of predictive
learning of sensorimotor information [17]. Predictive learning
intends to associate motor signals with sensory signals in a
predictive manner. Thus, the robot learns to predict senso-
rimotor signals when executing actions. The important point
here is that, even though the robot perceives only some sensory
signals when observing actions, the predictive learning enables
the robot to evoke the missing sensorimotor signals based on
previous execution experiences. We hypothesize that evoking
and integrating sensorimotor signals from own experiences
facilitates better prediction of others’ actions.



B. Computational model

We propose a computational model composed of two
modules, the sensorimotor predictor and the goal detector
(see the left side of Fig. 2). The predictor integrates and
learns sensorimotor signals through a fully connected neural
network which enables the different signals to interact with and
influence each other (see Section II-B-1 for more details). We
take advantage of the duality of the predictor, i.e., the predictor
learns sensorimotor information of own actions during action
production (e.g., visual V, tactile T and motor J in Fig. 2(a)),
and the same predictor is recruited during action observation to
predict sensorimotor information (Fig. 2(b)). We hypothesize
that the missing modalities during action observation (e.g.,
tactile T, motor J) can be reconstructed through recalling
the sensorimotor information learned during own action pro-
duction. Then, the integration of the reconstructed signals in
compensation for the missing ones will improve the accuracy
of the sensorimotor predictions. In addition, the predictor
also implements imaginary predictions for future time steps
through a repeated feedback of the predicted sensorimotor
signals in closed-loop manner (the dashed arrows in Fig. 2(b)).
Finally, the goal detector detects the sensorimotor state which
may correspond to the goal among the predicted sensorimotor
states. We define that the goal corresponds to the sensorimotor
state where abrupt changes in the tactile modality occurs. This
is in accordance with studies in humans indicating that tactile
inputs provide transition markers for manipulation [18].

There are two assumptions in our current approach. First,
we assume that the motor development corresponds to the
process of learning to predict sensorimotor signals of own
actions. The sequence of signals to be learned are given
through kinesthetic teaching (i.e., the robot does not perform
exploratory learning). We then investigate how the ability of
action prediction improves as learning advances. The second
assumption concerns the perspective difference. Usually the
vision observing the own actions and that observing others’
actions look different. However, our current study focuses on
the learning of own sensorimotor signals as a crucial factor
for reconstructing missing signals during action observation.
Therefore, we assume that the observer and the executer
share the same visual perspective. This problem will be again
discussed as a future issue.

1) Sensorimotor predictor: The predictor integrates and
learns to predict visual, motor and tactile signals. Here, we
adopt a deep autoencoder to implement the predictor. A deep
autoencoder can be regarded as two deep neural networks
stacked in a mirrored structure, in which the output layer
reproduces the same values as the input layer. In the autoen-
coder, consecutive layers are fully connected regardless of the
input modalities. Therefore, different modalities can interact
with and influence each other. A reason for adopting a deep
autoencoder is that it was shown to yield efficient performance
for predicting sensorimotor signals [19]. Particularly, we take
advantage of its ability to process high-dimensional data like
images without explicitly preprocessing them. The function of

the autoencoder is formulated as:

U = F (S), (1)

Ŝ = F−1(U), (2)

where S, U, and Ŝ are the input vector, the vector at the
central hidden layer, and the output vector, respectively. F(.)
represents the transformation mapping from the input layer to
the central hidden layer, and F−1(.) represents the mapping
from the central hidden layer to the output layer.

In action learning mode (Fig. 2(a)), the robot perceives
visual signals V(t), tactile signals T(t), and joint angles J(t)
at time t:

I(t) = [V(t),T(t), J(t)]. (3)

Then, the input S to the autoencoder is designed as a contigu-
ous segment (time window w) of the signals:

S(t) = [I(t− w + 1), ..., I(t− 2), I(t− 1), I(t)]. (4)

The output Ŝ(t) of the autoencoder is a vector with the same
structure as S(t), where V̂(t), T̂(t) and Ĵ(t) are the predicted
signals for time t. The difference between the predicted signals
V̂(t), T̂(t) and Ĵ(t) and the actual signals V(t),T(t) and J(t)
represents the prediction error. This error is fed back to the
neural network in order to update the connecting weights of the
autoencoder using back-propagation. We argue that learning to
predict sensorimotor signals leads to the development of action
production.

In the action observation mode, the robot has to predict
the sensorimotor signals from t + 1 to t + n, where n is a
time ahead for prediction (1 ≤ k ≤ n in Fig. 2(b)). When
observing others’ actions at time t, the only available inputs
are the visual signals V(t). Of importance here is that the
autoencoder predicts the missing tactile T̂(t + 1) and joint
angle Ĵ(t+ 1) signals for t+ 1 by recalling the sensorimotor
information learned during own actions. Then, the predicted
signals for t+ 1 are fed back to the input of the predictor to
compensate for the missing ones at t+1. We consider that this
process of reconstructing missing signals based on own action
experience is crucial to become able to predict others’ actions.
Next, the robot predicts the sensorimotor signals from t + 2
to t+n. In this case, the robot feeds back V̂(t+k), T̂(t+k)
and Ĵ(t+k) in closed-loop manner (the dashed arrows in Fig.
2(b)) at each iteration k to make the prediction of the signals
from t + 2 to t + n. Now, in relation to our implementation,
if the robot perceives the signals V(t) at time t, then

I(t) = [V(t), T̂(t), Ĵ(t)], (5)

where T̂(t) and Ĵ(t) are the reconstructed signals at the
previous time step. Thus, the input S1 to the autoencoder is,

S1 = [I(t− w + 2), I(t− w + 3), ..., I(t− 1), I(t), I(t)]. (6)

where the last slot of S1 is filled with a copy of the input
signals I(t), as shown in Fig. 3. Once the prediction is done,
the last slot of the output sequence Ŝ1 corresponds to the
predicted signals Î(t+ 1). Next, the input sequence is shifted



Fig. 3: Example of prediction ahead in time based on a closed-
loop of predicted sensorimotor information.

Fig. 4: Sequences of 20x15 RGB images showing the reaching
trajectories towards the three objects.

and the last two slots of the input sequence S2 are again filled
with the output of the last prediction, Î(t + 1). The last slot
of the output sequence Ŝ2 is the predicted signals Î(t + 2).
The procedure in closed-loop manner is repeated n times until
obtaining Î(t + n). This procedure generates the predicted
sequence of future sensorimotor modalities.

2) Goal Detector: This module detects the goal from the
predicted sequence of sensorimotor information. In our model
the goal state g(t) is characterized by abrupt changes in
the flow of tactile information. For detecting tactile changes,
the module calculates the norm of the difference between
predicted tactile signals at different time steps,

∆T(t+ k) = ||T̂(t+ k)− T̂(t+ k − d)|| (7)

for d + 1 ≤ k ≤ n and d > 0, where d is a constant value
accounting for a time span. The goal state g(t) corresponds to
the minimum value of k for which ∆T(t+ k)>h is satisfied,
where h is a threshold for abrupt changes. This module outputs
the visual information V̂(t+ g(t)) if g(t) exists.

III. EXPERIMENTAL SETTINGS

Our study replicated the experiment in [4]. We employed
the simulated version of the humanoid robot iCub. The tasks
for the robot were reaching three objects during training and
observing actions toward the same objects during testing. Fig.
4 shows examples of reaching actions to the three objects. We

carried out two experiments to verify our hypothesis. The first
experiment analyzed the co-development of action production
and prediction of others’ action goals. The second experiment
assessed the influence of integrating motor information on the
ability to predict goals. In this last experiment we contrasted
two conditions: the condition where sensory modalities (i.e.,
visual, tactile) and motor information (i.e., joint angles) are
integrated during action learning; and the condition where only
sensory modalities are learned.

A. Implementation of the computational model

The input signals were 4 joint angles, J, of the left arm
(shoulder yaw, shoulder pitch, shoulder roll, elbow); 3 binary
tactile signals, T, with identical value; and one 30-dimensions
visual vector V. The signals V and J were normalized in
the range [0,1]. The 30-dimensions visual vector originated
from a 320x240 RGB image from the iCub camera which
was first resized to a 20x15 RGB image using OpenCV,
and later compressed using an additional autoencoder from
900 dimensions (input vector S in Eq. 1) to 30 dimensions
(central hidden layer vector U in Eq. 1). The purpose of
reducing dimensionality is to compensate for the considerable
difference in dimensionality between raw images and the
other modalities. Once the prediction was done, the predicted
visual vector V̂ was decompressed from 30 dimensions to 900
dimensions (output vector Ŝ in Eq. 2). The iCub images were
taken from a world-view camera located contiguous to the eyes
so as to solve the narrowed panoramic view of the iCub’s eyes.

The autoencoder for sensorimotor prediction (i.e., the pre-
dictor) had 12 hidden layers: 6 encoding hidden layers of
1000, 500, 250, 150, 80, and 30 neurons and 6 decoding
hidden layers with 30, 80, 150, 250, 500 and 1000 neurons.
The additional autoencoder for compressing images had the
same structure. The activation functions were linear functions
for the hidden layers and logistic functions for the output
layer. We adapted implementations for deep neural networks
based on Theano [20] [21]. The time window w for prediction
was 30. The training was carried out using stochastic gradient
descent by backpropagation. To alleviate CPU constraints, the
system made predictions one time step ahead at every step
and 20 steps ahead at every 10 steps. The threshold h for goal
detection was 0.8. The time span d was 10.

B. Conditions for experimental analysis

The two experiments were repeated 13 times. The train-
ing/testing process of one experiment was divided into 15
stages. A contiguous pair of one training and one testing
accounted for one stage (i.e., in total, 15 trainings and 15
testings). Each stage included 6 reaching action trials for learn-
ing/testing (two reaching trials for each object). One action
trial took approximately 40 steps for reaching to the object,
40 steps for getting back to the home position and 25 steps
for being static at home position. The prediction autoencoder
(i.e., the predictor) was trained for 150 learning iterations at
each training. The autoencoder for image reduction was fully
trained for 1500 learning iterations since the first stage every



Fig. 5: Example of the three result categories

two stages. The weights of the autoencoders were randomly
initialized at the first stage. For later stages the weights started
with the weights as trained at the end of the previous stage.

The prediction results were classified into three categories:
correct, incorrect and non-prediction. The purpose of this
classification is assessing the goal prediction in terms of the
sensorimotor information. Fig. 5 shows classification exam-
ples. The correct category indicates that the system predicted
correctly the tactile and visual information of the goal state
at the first attempt (i.e., first goal detection after moving from
the home position). The incorrect category indicates that the
system predicted a tactile change but the predicted visual
information was not correct (i.e., average difference between
the predicted and the correct images exceeded a threshold).
The non-prediction category indicates that the system did not
predict tactile changes before the hand touched the object.

IV. EXPERIMENT 1: CO-DEVELOPMENT OF ACTION
PRODUCTION AND ACTION PREDICTION

We analyzed the development of goal prediction in syn-
chronization with the development of action production. The
results of the experiment are shown in Figs. 6, 7 and 8.
Fig. 6 shows examples of motor signals retrieved from visual
signals. This result indicates that the system could reconstruct
missing modalities based on the sensorimotor information
learned during own action production.

Now we focus on the analysis of our main target, i.e.,
the goal prediction. The horizontal axis in Figs. 7 and 8
represents the learning stages (one stage accounts for one
training and one testing). The blue, green and red bars in
Fig. 7 represent the percentage (average and standard error)
of correct prediction, incorrect prediction, and non-prediction,
respectively. The black curve in Fig. 7 represents the mean
learning error of the predictor. Fig. 7 shows that initially
the action learning error was high and the prediction was
dominated by the non-prediction category. However, while the
learning error decreased through the learning stages (i.e., the
motor ability develops), the correct and incorrect predictions
increased significantly in correspondence with a decrease
in the non-prediction. At the last stage, the learning error
decreased significantly and the correct prediction reached an
average of 58%. Fig. 8 represents how early in frames (i.e.,
anticipation time) the correct predictions were achieved. We
examined the anticipation time to check whether the correct

Fig. 6: Example of reconstruction of missing motor signals
from visual signals

predictions were effectively achieved before the hand reached
the objects. Fig. 8 shows that the anticipation time was around
eight frames. The results showed that our model developed
the ability to predict the action goal in synchrony with the
development of action production.

V. EXPERIMENT 2: INFLUENCE OF INTEGRATING MOTOR
INFORMATION ON GOAL PREDICTION

The second experiment analyzed the influence of integrating
motor information on the development of goal prediction.
The purpose was to contrast our hypothesis according to
which the integration of sensorimotor modalities improves
the prediction accuracy. As we mentioned, visual, tactile and
motor modalities interact with and influence each other in
the hidden layers of the predictor. Thus, here our purpose is
assessing, in terms of the goal prediction performance, the
effect of not including motor signals during action learning.

We carried out the experiment of action learning without
integrating goal-directed motor signals through the predictor
(i.e., we set to zero the input vector corresponding to the
motor signals). The bars in Fig. 9 represent the percentages
of prediction results as in Fig. 7. The Fig. 10 represents the
anticipation time as in Fig. 8. When comparing the graphs in
Figs. 7 and 9, we can observe that the correct predictions were
lower when goal-directed motor signals were not integrated.
The average difference at the last stage was around 10% in
favor of the system with integration of goal-directed signals.
Also, in contrast to experiment 1, the experiment 2 showed
that the prediction performance without integration of motor
signals was less stable and had temporary increases (e.g.,
around stage 11 in Fig. 9). Nonetheless, further experiments
under diverse settings are required in order to analyze this
temporary increases. The graph in Fig. 10 shows that the
anticipation time was around nine frames. We carried out a
two-way ANOVA using two factors (1: presence of motor
signal and 2: category) to compare the results between the
two experiments at the last stage. The data was normally
distributed for each category as determined by Chi-square
test (P <0.05; χ2 = 10.10 < 11.07 = χ2

crit). The two-



Fig. 7: Development of goal prediction in synchronization with
development of action production when integrating motor,
visual and tactile information.

Fig. 8: Anticipation time when integrating motor, visual and
tactile information.

way ANOVA indicated statistically no significant differences
between the results for the presence of motor signals as
determined by two-way ANOVA (F(2,72) = 0.78, P >0.05).
We carried out two separate one-way ANOVA to determine if
there exists significant differences between the correct predic-
tion, the non-prediction and the incorrect prediction categories
within each experiment at the last stage. For the system
without integration of motor signals, there were no statistically
significant differences between group means (F(2,36) = 2.609,
P >0.05). However, for the system integrating goal-directed
motor signals, there were statistically significant differences
between group means as determined by one-way ANOVA
(F(2,36) = 23.374, P <0.01). We carried out post-hoc t-test
to determine differences between the correct prediction and
the non-prediction, and between the correct prediction and the
incorrect prediction, for the system with motor integration.
The t-test showed to be significant for both cases, (t(24)
= 6.18, p <.05) and (t(23) = 5.83, p <.05), respectively.
Though the difference between the two experimental results
was not significant enough to be indicated by the two-way
ANOVA, the one-way ANOVA and t-test confirmed that the
presence of motor signals produced a significant increase of
the correct predictions. Regarding the two-way ANOVA, we
expect the difference becomes significant for conditions where
there is more ambiguity or noise in the learning signals,
as discussed in the next section. These results showed that
integrating goal-directed motor signals improved the ability to
make predictions.

Fig. 9: Development of goal prediction in synchronization with
development of action production in experiment integrating
visual and tactile information.

Fig. 10: Anticipation time in experiment integrating visual and
tactile information.

VI. DISCUSSION AND FUTURE WORK

Our experiments demonstrated that the development of
action production through predictive learning facilitates the
ability to predict others’ actions goals. The experiments as-
sessing the integration of motor signals showed that action
learning without integration of goal-directed motor signals
affected negatively the ability to predict the action goal. This
suggests that the integration of motor information during
action production improves the accuracy of the sensorimotor
prediction during action observation. We attribute this result
to the fact that the integrated motor signals interact with other
modalities in the hidden layers of the predictor. Thus, the
motor signals help to guide the sensory prediction toward a set
of sensory information learned during own action production.
In relation to this, and in order to know how the motor
signals interact with the sensory modalities, a future work to be
addressed is analyzing the feature space in the hidden layers.

Regarding further roles for the motor signals, we expect that
they become crucial to maintain predictive performance under,
e.g., ambiguous or noisy conditions. In our current setting
(conducted in a simulator) there is no significant ambiguity or
noise. However, in a real setting, noises from external sources
(e.g., visual signals) might become larger than those from
internal sources (e.g., motor signals). Under this scenario we
expect that the motor signals, which are less harmed by noise,
will help to maintain the prediction accuracy.

Figs. 8 and 10 suggested that in the early stages the
anticipation was earlier but less correct than in later stages in
which the anticipation got slower but much more correct. One



possible reason for this pattern is that at early stages the closed
loop (Fig. 3) using low accurate predictions produces larger
sensorimotor changes between predicted states, and therefore
the apparent goal state is reached earlier at the expense of
low prediction accuracy (i.e., incorrect predictions). Further
analysis is required to assess the trade-off between anticipation
and accuracy.

Psychological findings pointed out that infants can predict
actions of others even if they cannot produce them by them-
selves [1]. Accordingly, we plan to extend our model to explain
this phenomenon. One of the limitation of our current model
is that the goal detection relies on tactile information, which
is not viable when only visual information is involved. This
assumption is reasonable as a first step to verify our current
hypothesis about the role of the motor signals. However, a
future work is to propose a principle for goal detection that
explains goals in terms of several sensorimotor modalities.

Another problem that must be addressed is modeling hu-
mans’ ability to understand actions regardless the visual per-
spective. In terms of our model, the problem is to find the
correspondence between the sensorimotor information learned
during own actions and the one perceived when observing
the same action executed by others (i.e., different visual
perspective). Some methods have been proposed in robotics
to account for the visual perspective [22], [23]. However, they
assume explicit information about others’ perspectives [22], or
invariance of the sensorimotor information to spatio-temporal
transformations so as to allow sensorimotor matching [23].

In informal tests we found that improvements are required
in the autoencoder-based model for reaching to variable goal
positions (i.e., learning generalization). Currently the model
does not guarantee interpolation between raw images since
each input pixel is treated as a different dimension, and
therefore the network cannot learn pixel spatial relations.

VII. CONCLUSION

We introduced a computational model for the co-
development of action prediction and action production. The
results showed that our model based on the concept of
predictive learning was effective to account for this co-
development. Furthermore, our experiments demonstrated that
the integration of goal-directed motor information improves
the prediction accuracy. We consider that the integration of
motor signals improves prediction by guiding the sensory
prediction toward a set of sensory information learned during
own action production. These results support our claim that
predictive learning may explain the underlying mechanism for
co-development of action prediction and action production.

ACKNOWLEDGMENT

This work is partially supported by MEXT/JSPS KAKENHI
(Research Project Numbers: 24119003, 24000012, 25700027).

REFERENCES

[1] S. Hunnius and H. Bekkering, “What are you doing? how active and
observational experience shape infants’ action understanding,” Philo-
sophical Transactions of the Royal Society of London B: Biological
Sciences, vol. 369, no. 1644, p. 20130490, 2014.

[2] A. L. Woodward, “Infants selectively encode the goal object of an actor’s
reach,” Cognition, vol. 69, no. 1, pp. 1–34, 1998.

[3] J. A. Sommerville, A. L. Woodward, and A. Needham, “Action ex-
perience alters 3-month-old infants’ perception of others’ actions,”
Cognition, vol. 96, no. 1, pp. B1–B11, 2005.

[4] Y. Kanakogi and S. Itakura, “Developmental correspondence between
action prediction and motor ability in early infancy,” Nature communi-
cations, vol. 2, p. 341, 2011.

[5] G. Di Pellegrino, L. Fadiga, L. Fogassi, V. Gallese, and G. Rizzolatti,
“Understanding motor events: a neurophysiological study,” Experimental
brain research, vol. 91, no. 1, pp. 176–180, 1992.

[6] V. Gallese, L. Fadiga, L. Fogassi, and G. Rizzolatti, “Action recognition
in the premotor cortex,” Brain, vol. 119, no. 2, pp. 593–610, 1996.

[7] G. Rizzolatti and L. Craighero, “The mirror-neuron system,” Annu. Rev.
Neurosci., vol. 27, pp. 169–192, 2004.

[8] L. Fogassi, P. F. Ferrari, B. Gesierich, S. Rozzi, F. Chersi, and G. Rizzo-
latti, “Parietal lobe: from action organization to intention understanding,”
Science, vol. 308, no. 5722, pp. 662–667, 2005.

[9] M. Kawato, “Internal models for motor control and trajectory planning,”
Current opinion in neurobiology, vol. 9, no. 6, pp. 718–727, 1999.

[10] M. Haruno, D. M. Wolpert, and M. Kawato, “Mosaic model for
sensorimotor learning and control,” Neural computation, vol. 13, no. 10,
pp. 2201–2220, 2001.

[11] E. Oztop, D. Wolpert, and M. Kawato, “Mental state inference using
visual control parameters,” Cognitive Brain Research, vol. 22, no. 2,
pp. 129–151, 2005.

[12] J. Tani and M. Ito, “Self-organization of behavioral primitives as
multiple attractor dynamics: A robot experiment,” IEEE Transactions on
Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 33,
no. 4, pp. 481–488, 2003.

[13] M. Asada, K. F. MacDorman, H. Ishiguro, and Y. Kuniyoshi, “Cognitive
developmental robotics as a new paradigm for the design of humanoid
robots,” Robotics and Autonomous Systems, vol. 37, no. 2, pp. 185–193,
2001.

[14] T. Ogata, R. Yokoya, J. Tani, K. Komatani, and H. G. Okuno, “Predic-
tion and imitation of other’s motions by reusing own forward-inverse
model in robots,” in IEEE International Conference on Robotics and
Automation, 2009. ICRA’09., pp. 4144–4149, IEEE, 2009.

[15] Y. Demiris and B. Khadhouri, “Hierarchical attentive multiple models for
execution and recognition of actions,” Robotics and autonomous systems,
vol. 54, no. 5, pp. 361–369, 2006.

[16] J. Baraglia, J. L. Copete, Y. Nagai, and M. Asada, “Motor experience
alters action perception through predictive learning of sensorimotor
information,” in Joint IEEE International Conference on Development
and Learning and Epigenetic Robotics (ICDL-EpiRob), 2015, pp. 63–69,
IEEE, 2015.

[17] Y. Nagai and M. Asada, “Predictive learning of sensorimotor information
as a key for cognitive development,” in Proc. of the IROS 2015 Workshop
on Sensorimotor Contingencies for Robotics, 2015.

[18] R. S. Johansson and J. R. Flanagan, “Coding and use of tactile
signals from the fingertips in object manipulation tasks,” Nature Reviews
Neuroscience, vol. 10, no. 5, pp. 345–359, 2009.

[19] K. Noda, H. Arie, Y. Suga, and T. Ogata, “Multimodal integration
learning of robot behavior using deep neural networks,” Robotics and
Autonomous Systems, vol. 62, no. 6, pp. 721–736, 2014.

[20] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-
jardins, J. Turian, D. Warde-Farley, and Y. Bengio, “Theano: A cpu and
gpu math compiler in python,” in Proc. 9th Python in Science Conf,
pp. 1–7, 2010.

[21] O. Chapelle and D. Erhan, “Improved preconditioner for hessian free
optimization,” in NIPS Workshop on Deep Learning and Unsupervised
Feature Learning, 2011.

[22] R. Nakajo, S. Murata, H. Arie, and T. Ogata, “Acquisition of viewpoint
representation in imitative learning from own sensory-motor experi-
ences,” in 2015 Joint IEEE International Conference on Development
and Learning and Epigenetic Robotics, pp. 326–331, IEEE, 2015.

[23] F. Schrodt, G. Layher, H. Neumann, and M. V. Butz, “Embodied learning
of a generative neural model for biological motion perception and
inference,” Frontiers in computational neuroscience, vol. 9, 2015.




