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The human ability to recognize actions executed by other individuals was found to develop in synchrony with
the development of action production. We argue that the concept of predictive learning of sensorimotor integration
explains the co-development of action recognition and action production. We proposed a computational model
of development of prediction of goal based on predictive learning. Our results showed that our model was able
to develop the ability to predict the action goal through the development of action production. Furthermore, we
demonstrated that the integration of goal-directed motor signals improves the prediction performance.

1. Introduction

Explaining how humans recognize others’ actions is a

challenging question to address. Understanding its under-

lying mechanism may also bring novel perspectives for de-

velopment of robot cognition. Psychological studies found

that the emergence of infants’ ability to predict action goals

are correlated with the development of their motor skills

to produce similar actions [Kanakogi 11, Sommerville 05].

These findings are in line with studies in neuroscience sug-

gesting that observation and execution of actions share

the same neural architecture (i.e., mirror neuron system)

[Rizzolatti 04]. Computer scientists have attempted to pro-

pose models with similar characteristics to the mirror neu-

ron system. Haruno et al. [Haruno 01] proposed MOSAIC

model. Oztop et al. [Oztop 05] proposed the Mental State

Inference (MSI) model to account for how mental state

inference can be achieved with one’s own motor system.

Tani and Ito [Tani 03] proposed a type of recurrent neural

network with Parametric Bias (PB). Similar computational

models have been adopted for problems on action produc-

tion and recognition in robots like imitation [Ogata 09] and

object manipulation [Noda 13]. The study by Baraglia et al.

[Baraglia 15] showed that action production alters action

perception. Copete et al. [Copete 14] proposed a model

for development of the ability to predict others’ goal in

terms of visual information. However, there are no com-

putational studies to explain the development of the ability

to predict others’ goal in synchrony with development of

action production. We proposed a computational model

of the co-development of action prediction and action pro-

duction and carried out experiments for reaching actions.

We adopted the concept of predictive learning of sensori-

motor information as the key mechanism that accounts for

the co-development of action recognition and action pro-

duction. The concept of predictive learning of sensorimotor

information [Nagai 15] establishes that the predictor that is

recruited for predicting actions performed by others is the

same predictor that learns sensorimotor information asso-
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Figure 1: Scenario of reaching actions for action production

and action recognition

ciated to own action production. Therefore, the ability to

predict others’ actions relies on the experience of own action

production.

2. Our Proposed Approach

We hypothesize that the sensorimotor information that

humans learn during own action production helps to recog-

nize actions when observing others. We propose to employ

the concept of predictive learning of sensorimotor informa-

tion to model this hypothesis [Nagai 15]. According to this

concept, sensorimotor information (e.g., visual, tactile, mo-

tor) are learned through a predictor during the development

of own action production, as depicted in Fig. 1. Then,

when observing others’ actions, even though the sensory

information that can be perceived is limited (e.g., visual),

the predictor can reconstruct missing sensorimotor informa-

tion associated to those actions based on the sensorimotor

information learned during own action production. As a

consequence, this information will help to recognize others

actions. Another important aspect for action recognition

is the ability to identify the goal of those actions. In this

regard, we proposed that changes in the flow of tactile in-

formation can be employed to identify the goal of reaching

actions.

We proposed a computational model for action recogni-

tion and action production as shown in Fig. 2. The model
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(a) Action Production

(b) Action Observation

Figure 2: Computational model for action production and

action recognition based on predictive learning of sensori-

motor information.

is composed of two modules: predictor and goal detector.

2.1 Sensorimotor Predictor
This module is in charge of integrating and learning to

predict sensorimotor information. We employed deep au-

toencoders based on previous work by Noda et al. [Noda 13]

reporting their advantages for predicting temporal data se-

quences. A deep autoencoder learns to reproduce the same

values of the input layer in the output layer. The main

advantage of the autoencoder is that after training the net-

work can be connected in a closed-loop manner to predict

future states of a temporal sequence of data. The inputs

are visual signals V(t), tactile signals T(t), and joint an-

gles J(t). A sequence of input data from the last w steps

(i.e., time window) are input to the deep autoencoder. The

deep autoencoder predicts sensorimotor signals from time

t + 1 to t + n through a closed-loop feedback, where n

is the time ahead for prediction. When the system pro-

duces actions, the predictor learn by comparing the pre-

dicted sensorimotor signals at t + 1 with the real signals

at t + 1, and feeding back the error to the neural network

(Fig. 2(a)). When the system observes others’ actions, only

visual signals are available but the deep autoencoder pre-

dicts tactile signals and joint angles which are fed back in

a closed-loop manner (Fig. 2(b)). The module output are

[V’(t),J’(t),T’(t), ...,V’(t+n−1),J’(t+n−1),T’(t+n−1)].

2.2 Goal Detector
This module receives sensorimotor information from the

predictor, detects the goal state and outputs the sensori-

motor information corresponding to the goal state. The

goal of the action corresponds to the state at which signif-

icant changes in sensory information occur. Tactile signals

were employed for goal detection in reaching actions in our

current implementation. For detecting significant tactile

changes, we calculate the norm of the vectorial difference

between the predicted values of tactile signal at time t+k−d
and time t + k,

c(t) = ||T̂(t + k)− T̂(t + k − d)|| (1)

Then, the action goal G corresponds to

G =

{
V’(t + k) c(t)>h

V’(t + 1) (otherwise)
(2)

where k (k ≤ n) represents the time ahead in frames of pre-

diction, h is a threshold to account for abrupt changes, and

d is a constant value to account for a span of time within

which significant changes can be detected. The module out-

puts the sensorimotor information corresponding to the goal

state.

3. Experimental Settings

We employed the simulated version of the humanoid

robot iCub. The system receives and processes visual, mo-

tor and tactile signals from the robot. The input signals

to the predictor are a 20x15 RGB image; 4 joint angles of

the left arm (shoulder yaw, shoulder pitch, shoulder roll, el-

bow); and 3 binary tactiel signals with identical value. The

time window w of the predictor is 30 steps and the threshold

h of tactile change for goal detection was 0.8. The predic-

tion module is composed of two deep autoencoders. One

autoencoder makes dimension reduction of input images,

and the second autoencoder makes sensorimotor prediction.

Each autoencoder has 12 hidden layers: 6 encoding hidden

layers of 1000, 500, 250, 150, 80, and 30 neurons and 6 de-

coding hidden layers with 30, 80, 150, 250, 500 and 1000

neurons. The activation functions are linear functions for

the hidden layers and logistic functions for the output layer.

We adapted available implementations for Deep Neural Net-

works based on Theano [Chapelle 11]. The autoencoder for

dimension reduction transforms the dimensionality of the

input images from 900 to 30 dimensions (i.e., encoding), or

vice versa (i.e., decoding). The autoencoder for sensorimo-

tor prediction learns the encoded visual signals, the motor

signals, the tactile signals. The weights of both autoen-

coders were initialized to random values and the training

process was carried out using a stochastic gradient descent

algorithm.

The experimental task consisted in the robot reaching for

three objects during training (i.e., moving the left hand for-

ward and back continuously) and observing the arm reach-

ing for objects during testing (i.e., only visual signals). The

experiments included two conditions for action learning:
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Figure 3: Example of the three categories of prediction

Figure 4: Example of reconstruction of motor signals from

visual signals

sensory information and motor information are integrated

(i.e., visual, tactile and joint angles); motor information is

not integrated (i.e., visual and tactile). The problem of vi-

sual perspective difference is out of our current target and

will be discussed as a future issue. For one session of learn-

ing we ran 15 trainings and 15 testings alternately, so each

training and testing accounted for one developmental stage.

The prediction results were classified into three categories:

correct, incorrect and non-prediction, in order to assess the

development of the goal prediction ability. Fig. 3 shows

examples of classification of prediction results. The correct

category indicates that the system predicted the correct

visual and tactile information corresponding to the target

object before the robot hand touched the object. The incor-

rect category indicates that the predicted visual information

did not correspond to the correct one. The non-prediction

category indicates that the system did not predict tactile

changes before touching the object.

4. Experiment 1

The first experiment analyzed the developmental process

of goal prediction in synchronization with the development

of action production. The experimental results are shown

in Figs. 4, 5 and 6. Fig. 4 shows examples of motor signals

retrieved from visual signals which demonstrate the ability

of the system to reconstruct missing signals. In Fig. 5 and

6, the horizontal axis represents the learning stages, where

each stage accounts for a set of one training phase and one

testing phase. The left vertical axis of Fig. 5 represents the

rate of each result category. The right vertical axis of Fig.

Figure 5: Development of goal prediction in synchronization

with development of action production with integration of

motor, visual and tactile information.

Figure 6: Anticipation time in experiment 1 with integra-

tion of motor, visual and tactile information.

5 represents the output error of the predictor. Both graphs

show average values of prediction and their standard error.

The vertical axis of Fig. 6 shows how early the correct pre-

dictions was, which help to examine if the system acquired

the ability to predict the goal before the arm reaches to the

object.

Fig. 5 shows that learning error for action production was

initially high but decreased rapidly for the first three stages.

Later, the error decreased until reaching its lower value af-

ter stage twelve. In parallel, the ratio of goal prediction in

the initial four stages was dominated by the non-prediction

category. However, since the third stage the correct and

incorrect predictions showed a significant increase with a

correspondent decrease in the non-prediction. Later, the

correct prediction continued to increase until reaching an

average of 58% at stage fifteen. Fig. 6 shows the aver-

age prediction time was around eight frames earlier before

reaching the object. The experiment demonstrated that

our computational model was able to develop the ability

to predict the action goal through development of action

production.

5. Experiment 2

The second experiment analyzed the influence that mo-

tor information have on the development of goal prediction.

For that purpose, to contrast our hypothesis, we tested the

condition in which motor information is not integrated with

the sensory information during development of action pro-

duction and action recognition. Therefore, we carried out

an experiment of action learning without integrating motor

signals (i.e., we set to zero the input layer corresponding to

motor signals and integrated only visual and tactile signals).
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Figure 7: Development of goal prediction in synchronization

with development of action production with integration of

visual and tactile information.

Figure 8: Anticipation time in experiment 2 with integra-

tion of visual and tactile information.

Fig. 7 represents the rate of each result category. Compar-

ing graphs in Fig. 7 and Fig. 5 we can observe the correct

predictions of the system without integration of motor in-

formation was lower, accounting for a difference of around

10% in the last stages in favor for the system with motor

integration. We carried out two t-test in the last develop-

mental stage to determine differences between the correct

prediction category and the non-prediction category, and

between the correct prediction category and the incorrect

prediction category. For the system with motor integration,

the t-test showed to be significant for both cases, (t(24) =

6.18, p <.05) and (t(23) = 5.83, p <.05), respectively. For

the system without motor integration, the t-test showed

no significant difference between the correct prediction and

the non-prediction (t(24) = 1.59, p <.05), and significant

difference with the incorrect prediction (t(23) = 2.37, p

<.05). These results showed that the experience of goal-

directed motor signals (in contrast to the non-goal-directed

zero signals) improved the ability to make correct predic-

tions, which could be due to the learned association between

goal-directed motor signals and visual signals which make

the prediction of sensory information more accurate.

6. Conclusions and Future Work

The experimental results showed that our model was able

to develop the ability to predict the action goal through the

development of action production. Our analysis demon-

strated that the integration of goal-directed motor sig-

nals across the development improves the prediction perfor-

mance through the association between goal-directed motor

signals and visual signals which helps to make the sensory

prediction more accurate. In addition, the role attributed

to the tactile signals for goal detection was effective for

reaching tasks. A next problem to address is explaining the

mechanism and conditions that allow recognizing others ac-

tions regardless visual perspective. Additional future work

includes studying the influence that action recognition has

on action production and generalizing the mechanism for

goal detection.
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