Principal Component Analysis of
Two-dimensional Flow Vector Fields
on Human Facial Skin
for Efficient Robot Face Design

Nobuyuki Ota, Hisashi Ishihara, and Minoru Asada

Graduate School of Engineering, Osaka University

Abstract. In this study, deformation patterns of an adult male lower
face are measured and analyzed for efficient face design for android
robots. We measured flow vectors for 96 points on the right half of the
lower face for 16 deformation patterns, which are selected from Ekman’s
action units. Namely, we measured 16 flow vector fields of facial skin flow.
The flow vectors were created by placing ink markers on the front of the
face and then video filming various facial motions. A superimposed image
of vector fields shows that each point moves in various directions. Princi-
ple component analysis was conducted on the superimposed vectors and
the contribution ratio of the first principal component was found to be
86%. This result suggests that each facial point moves almost only in
one direction and different deformation patterns are created by different
combinations of moving lengths. Based on this observation, replicating
various kinds of facial expressions on a robot face might be easy because
an actuation mechanism that moves a single facial surface point in one
direction can be simple and compact.

1 Introduction

Facial expression is one of the important communication channels for humans;
therefore, designers of communication robots have tried to replicate human facial
expressions on robot faces [1,2,4-14]. When humans change facial expressions,
entire skin surfaces deform in complicated patterns, which is difficult for robot
designers to replicate. To replicate several facial expressions on a single robot
face, the designers should know how each point on a human face moves for several
facial deformation patterns.

Traditionally, robot face designers [2,4,6,7,10,11,13,14] have decided the
locations of facial moving points and their directions based on Ekman’s action
units (AUs), which are summarized and introduced in the Facial Action Cod-
ing System (FACS) [3]. AUs are facial deformation patterns created when one
or more facial muscles are activated, and FACS explains that different facial
expressions are realized by different combinations of one or several action units.

However, AUs are not enough to design effective actuation mechanisms for
a robot face because only verbal qualitative descriptions of deformations are



introduced in FACS. Instead, quantitative information such as flow vector fields
must be used to effectively design robot faces. Cheng et al.[2] have pointed out
this issue and measured facial deformations with a 3D scanner. However, their
observation was limited to only four typical facial expressions, which were smile,
anger, sadness, and shock.

Therefore, in this study, we measured every conceivable deformation pattern
especially in the lower face of a Japanese adult male. Namely, we measured
flow vector fields of facial skin. Then, two kinds of compensation processing for
the measured vector fields, such as head movement compensation and neutral
face matching, are executed. Finally, Principal Component Analysis (PCA) was
conducted to determine variations in movements and flow field trends of each
facial point.

2 Method

2.1 Motion Patterns

FACS introduces sixteen deformation patterns in the lower face and they are
selected for this experiment. Table 1 summarizes the selected deformation pat-
terns. Each AU has its own AU number and name defined in FACS. Basically,
the name contains information about the responsible part of the face (e.g., lip
corner) and its deformation pattern (e.g., puller).

FACS describes how to activate each AU and an example of its associated
facial image. A Japanese adult male (hereafter demonstrator) activated each AU
and his facial deformations were measured in this experiment.

Table 1. deformation patterns (Ekman’s action units) measured in this experiment

AU Number Name

9 Nose Wrinkler

10 Upper Lip Raiser
11 Nasolabial Furrow Deepener
12 Lip Corner Puller
13 Sharp Lip Puller
14 Dimpler

15 Lip Corner Depressor
16 Lower Lip Depressor
17 Chin Raiser

18 Lip Pucker

20 Lip Stretcher

22 Lip Funneler

23 Lip Tightener

24 Lip Presser

25 Lips Part

28 Lips Suck




2.2 Measurement

Ninety six measurement points were identified on the demonstrator’s skin, and
ink markers were placed on them, as shown in Fig.1. Each marker was approxi-
mately 2-5 mm in size, and their locations were decided so that they were placed
not only on anatomically distinctive points, such as corners of the mouth and
the top of the nose, but also on other plane surfaces such as the cheek.

The movements (or flows) of the markers for each AU were recorded by video
filming (SONY HANDYCAM HDR-CX420) at the front of the demonstrator.
While being filmed, the demonstrator began with a neutral face, activated one
of the selected AUs, and kept its deformation for several seconds. Sixteen video
recordings were created, each of which contains both the demonstrator’s neutral
face and his deformed one.

Fig. 1. Locations of ink markers on the right half of a Japanese adult male’s lower face

2.3 Data Processing

To measure flow vectors of the markers, two video frames were selected from each
video recording of each AU. The first one contains the demonstrator’s neutral
face and the second one contains his deformed one.

By comparing pixel coordinates of each marker in these two images, we can
roughly calculate each marker’s flow vector. However, two kinds of image cor-
rections are necessary to calculate more precise flow vectors and to superimpose
several flow vectors of the same marker. The first one is the Head Movement
Compensation. While activating each AU, the demonstrator’s head can move;
therefore, the markers’ pixel coordinates can move even if the marker does not
move on face. The second one is Neutral Face Matching between different AUs to
superimpose several vectors for the same marker. Even though the demonstrator
tried to show the same neutral face with the same head position in each video



recording session, these neutral faces can not be exactly the same. Therefore,
starting points for flow vectors of the same marker are not in the same position
between different AUs.

Head Movement Compensation For head movement compensation, five ref-
erence points on the facial images shown in Fig. 2 were used. Reference points
were placed on the top of the nose, on the mid-point between the eyes, and on
the mid-point between the corner of the eye and the ear. These points are known
to be relatively static on humans faces[2]. In addition to these three points, two
additional reference points were placed on the top of the head and the chin.

The sizes and positions of the two images for each AU were adjusted so that
each reference point matched. This adjustment was manual because matching
five points was relatively simple.

Fig. 2. Reference points on a facial image for head movement compensation

Neutral Face Matching For neutral face matching between different AUs,
first, the neutral face image for AU9 was randomly chosen as a reference image.
Affine transformations were applied to 15 sets of 97 marker coordinates (96 ink
markers and the reference point on the top of the chin) in neutral face images
so that these marker sets would match with a marker set of the reference image.

Two-dimensional coordinate vector X; ; of a marker 7 in an image j is con-
verted to a coordinate vector X; ; by the equation

Xi;=A;X;+bj,



where Aj; is a linear transformation matrix and b; is a translation vector for
an image j. The purpose is to find the parameters of A; and b; so that the
coordinate vectors le’j(i = 1,...,97) match with vectors X; ¢ for an neutral
face image of AU9.

To find the appropriate parameters, Steepest Descent Method was imple-
mented with an error function defined as

F(Aj) = /S0, Xio — X[ 117

3 Result

3.1 Flow Vector Fields

Figures 3 and 4 show the measured flow vector fields for AU12 and AU16, respec-
tively. Green arrows represent flow vectors, and the facial images depict defor-
mation for each AU. These flow vectors were obtained after the Head Movement
Compensation. After the compensation, the maximum average error of five ref-
erence points between two images was 1.9 pixels. Considering the actual head
size was 275 mm and the head image size was 600 pixels, the estimated error
was 0.9 mm.

These figures show how facial deformations are extensive and complicated
and how the flow fields are different between AUs. For example, in AU12, which
is Lip Corner Puller, we can see entire surfaces around the cheek, lips, and
jaw move. The flow vectors near the lip corner have longer lengths, and their
directions are aligned toward the top side of the face. On the other hand, in
AU16, which is Lower Lip Depressor, we can see the entire surface below the
mouth movement, and these directions are not aligned toward the side bottom.

Fig. 3. Measured skin flow vector field for AU12 (Lip Corner Puller)



Fig. 4. Measured skin flow vector field for AU16 (Lower Lip Depressor)

3.2 Superimposed Field

Figure 5 represents the superimposed vector field before Natural Face Match-
ing, which is the compensation processing to match vector starting points for
the same marker. Vector colors indicate the vector angle. We can find that the
starting points are not matched.

On the other hand, the starting points are matched well after Neutral Face
Matching, as shown in Figure 6. From this figure, we can determine how far and
in which directions each point on the face moved. The point near the face midline
moved only vertically. However, other points moved in several directions. The
points near the mouth moved farther than points near the nose or the eye. The
maximum vector length was 22 mm and it appeared at the corner of the lower
lip for AU13.

Thus, the flow vectors seem to be too complex to replicate on a robot face.
However, there seems to be a trend in the flow lines that connect the chin, the
corner of the eye, and the corner of the lips. We will analyze this trend in the
next section.
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Fig. 5. Superimposed vector field before Neutral Face Matching. Starting points are
not matched. The positions of the eye, nose, and mouth are indicated by gray areas as
a reference.
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Fig. 6. Superimposed vector field after Neutral Face Matching. Starting points are
matched. The positions of the eye, nose, and mouth are indicated by gray areas as a

reference.



3.3 Principal Component Analysis

Figure 7 shows the first and second principal components of each marker’s flow
vectors whose starting points are matched by Neutral Face Matching. The di-
rections of two double-headed arrows for each marker represent the directions of
the first and second principal components, respectively, while the lengths of the
two arrows represent the variances of their scores. Namely, the longer the arrows,
the farther the marker moved for different AUs. We found that the arrows closer
to the mouth are longer.

Figure 8 shows the histogram for the contribution ratios of the first principal
components for every marker. Their average was 86%, which means that almost
all marker movement occur only in one direction at each point.
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Fig. 7. The first and second principal components of flow vectors for each marker.
The directions of two double-headed arrows for each marker represent the directions
of the first and second principal components, respectively, while the lengths of the two
arrows represent variances of their scores. The positions of the eye, nose, and mouth are
indicated by gray areas as a reference. The s-shape trend of the flow lines is indicated
by a green line.

Figure 9 shows the histogram for the minimum reproduction errors of every
flow vectors when every markers move only in the directions of each first principal
component. The reproduction error of each marker in each AU is its second
principal component score. Over eighty percent of the reproduction errors was
under 2 [mm] and over 95 percent of them was under 4 [mm].

Furthermore, we can find an s-shape trend of flow lines that connect the side
of the chin, the corner of the lips, the side of the cheek, and the corner of the
eye. This trend is represented in Fig. 7 as a green line.
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Fig. 8. Histogram for the contribution ratios of the first principal components for every
marker

4 Conclusion

The main findings of the measurement and analysis of 16 patterns of facial flow
vector fields are as follows:

— Although facial surfaces seem to move in a complicated manner when several
deformation patterns are expressed, almost all movements occur only in one
direction in each measured point on the face.

— Such principal directions for all of the points are continuous through the
entire facial surface; such continuous flows form an s-shape trend.

— Moving lengths for each point for several deformation patterns vary more
significantly around the mouth.

These findings suggest that various kinds of facial expressions are created by
combinations of different movement lengths of facial surface points, each of which
moves almost only in one direction.

These observations can facilitate replicating various kinds of facial expres-
sions on a robot. This is because an actuation mechanism that moves a facial
surface point in one direction can be simple and compact while a mechanism
that moves the point in several directions would be complex.

However, several problems remain to be solved to obtain further effective
design policies for face robots. First, the flow vectors lack depth information
since we obtained these vectors from two-dimensional images. Therefore, three-
dimensional flow vectors should be obtained for more precise analysis. Second,
the number of points required to replicate the flow vector fields on a robot should
be less than 96 because that is too many to prepare actuation mechanisms for
each point. Therefore, neighbor points that move similarly should be treated
as a single point representing its peripheral area. Third, the second principal
component should not be ignored. Although its contribution ratio is low, skin
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Fig. 9. Histogram for the reproduction errors of flow vectors when every markers move

only in the directions of each first principal component

flows of the second principal component exist and they can be dominant in some
of deformation patterns. Further flow field analyses are necessary on each AU to
understand when flows of the second principal component occur.
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