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Abstract
The promise of robots assisting humans in everyday tasks has led to a variety of research questions and challenges in
human-robot collaboration. Here, we address the question of whether and when a robot should take initiative during joint
human-robot task execution. We designed a robotic system capable of autonomously performing table-top manipulation
tasks while monitoring the environmental state. Our system is able to predict future environmental states and the robot’s
actions to reach them using a dynamic Bayesian network. To evaluate our system, we implemented three different initiative
conditions to trigger the robot’s actions. Human-initiated help gives control of the robot action timing to the user; robot-
initiated reactive help triggers robot assistance when it detects that the human needs help; robot-initiated proactive help
makes the robot help whenever it can. We performed a user study (N=18) to compare the trigger mechanisms in terms
of quality of interaction, system performance and perceived sociality of the robot. We found that people collaborate best
with a proactive robot, yielding better team fluency and high subjective ratings. However, they prefer having control of
when the robot should help, rather than working with a reactive robot that only helps when needed. We also found that
participants gazed at the robot’s face more during the human-initiated help compared to the other conditions. This shows
that asking for the robot’s help may lead to a more “social” interaction, without improving the quality of interaction or
the system performance.
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1. Introduction

In the next few decades, robots able to efficiently inter-
act and collaborate with humans will improve productivity
and the quality of everyday tasks, while reducing the work-
load. Robots will therefore be required to execute dexter-
ous manipulations while fluently and efficiently performing
joint tasks with humans teammates. However, many tasks,
for instance in household environments, require a high level

and designing robot behaviors to improve team effective-
ness and fluency (Chao and Thomaz, 2013; Dragan et al.,
2015). Others have given guidelines on the behavior the
robot should perform in order to be perceived as social.
For instance, Li et al. (Li et al., 2011) suggested that a
social robot should be able to recognize the presence of
human, engage in physical acknowledgment, use physical
motions, express/perceive emotions and engage in some
sort of communication.
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of perception and cognitive and social capabilities to be effi-
cient and positively perceived. Although such interactions
come naturally to human-human teams, achieving simi-
lar fluency and comfort in human-robot teams poses many
challenges.

Several of these challenges have been already tackled
by previous works. Some of the main research threads
have investigated ways to compute robot action plans that
improve joint task performance while reducing the work-
load on the human (Hayes and Scassellati, 2013), track-
ing and anticipating human motion to enable execution
of such task plans (Hoffman and Breazeal, 2010; Niko-
laidis and Shah, 2013; Perez-D’Arpino and Shah, 2014),

While past work provides useful insights into how a robotshould help as part of joint human-robot interaction and
what behavior it should display to be perceived as social, in
this paper we focus on the question of when a robot should
help and how it impacts the participant’s perception of the
robot. In particular we investigate the factor of initiative
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Fig. 1. Different initiative models for robot assistance during collaborative task executions: Human-initiated help (a), robot-initiated
reactive help (b), and robot-initiated proactive help (c).

in robot assistance during joint task execution. We ask two
questions.

1. Should the robot take initiative or let the human control
the robot’s participation in the task?

2. When should the robot take initiative?

To address these questions, we present findings from a
user study (N=18) in which participants performed different
tray preparation tasks in three conditions involving different
assistance trigger mechanisms. We showed that people col-
laborate best with a proactive robot in terms of team fluency
metrics and prefer the proactive help over other conditions.
However, they preferred the human-initiated help over the
reactive help, even though it results in higher human idle
times and slower task completion

On top of the previous work done by Baraglia et al.
(Baraglia et al., 2016), we present the autonomous system
used to help a human user to achieve table top tasks. Our
system uses a dynamic Bayesian network (DBN), which is
able to predict future environmental states and the robot’s
actions to reach them. One interesting property of our
model is that it can easily switch between different assistive

robot. Furthermore, we show that the face gazes can be
interpreted as early cues for turn taking in the human-
initiated condition and could be used by the robot to
speed-up its response.

The novel contributions of this article are as follows.

1. The presentation of a novel autonomous system using
probabilistic inference to help a human user to achieve
table top tasks.

2. A more detailed examination of the human-robot inter-
action subjective metrics.

3. A novel analysis of the users’ gaze toward the robot dur-
ing joint task collaborations and how they correlate with
the previously examined metrics.

2. Related work

2.1. Human-robot collaboration

In recent years, collaborative robots designed to work side-
by-side with humans have gained momentum in real-world
settings. This has fueled a large body of research on human-
robot collaboration. One of the core research threads tackles
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behaviors by adjusting simple trigger mechanisms. Using
this system, we investigate different mechanisms for trig-
gering robot assistance in the context of joint table-top
manipulation tasks. We implement three of these trigger
mechanisms depicted in Figure 1:

(a) human-initiated help, which gives control of robot
action timing to the user;

(b) robot-initiated reactive help, in which assistance is
triggered when the robot detects that the user needs
help;

(c) robot-initiated proactive help, in which the robot helps
whenever it can.

In addition, we present additional novel analysis of the
participants’ gaze toward the robot’s arms and face, which
further supports our claims and introduces new contribu-
tions. We show that the user gazed more to the robot’s
face in the human-initiated condition, arguably due to the
required one-way communication from a human to the

the problem of task planning for joint human-robot tasks.
Among others, Shah generates a robot action plan so as to
minimize human-idle time (Shah et al., 2011). Hayes and
Scassellati developed a collaboration planner that reduces
cognitive and physical load on the human (Hayes and Scas-
sellati, 2013). Another vein of research focuses on low-level
motion planning for the robot within a collaborative context
(Dragan et al., 2015; Mainprice et al., 2011; Mainprice and
Berenson, 2013; Sisbot et al., 2008), with an eye towards
improving team fluency and the user’s sense of safety.

Researchers have studied other low-level behaviors,
besides robot motion, that impact collaboration and enable
coordination of actions during task execution (Mutlu et al.,
2013). For example, Clair and Mataric (2015) demon-
strated that robot verbal feedback improves team perfor-
mance. Awais and Henrich (2012) proposed mechanisms
to mitigate breakdowns in joint tasks. Others focus on the
coordination of micro-interactions that occur during collab-
oration, such as object hand-overs, using gaze (Moon et al.,
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Fig. 2. (a) Goal states for the two task categories used in our evaluation. (b) Pictorial description of a sample task instance (category
Task B), used to explain the task to participants in the user study.

2014) or adapting timing of motions to the human’s state
(Huang et al., 2015b). Chao and Thomaz (2013) developed
mechanisms to coordinate sharing of common resources
during collaboration, such as the speaking floor or part of
the workspace that both the human and the robot need to
access.

Besides generation of robot behaviors, another key prob-
lem in human-robot collaboration is perception of the
human. Preliminary work by Hoffman and Breazeal sug-
gests that anticipatory perceptual simulation improves effi-
ciency and fluency in teamwork (Hoffman and Breazeal,
2007, 2010). With the help of new sensing and human
tracking technologies, many others followed with models of
action or motion anticipation in the context of human-robot
collaboration (Awais and Henrich, 2012; Hawkins et al.,
2014; Jarrassé et al., 2008; Nikolaidis et al., 2015).

As mentioned in Section 1, this paper focuses on the
question of initiative about when a robot should help.

hesitation is detected. Similarly, Baraglia et al. (2014) pro-
posed a developmentally motivated behavior in which the
robot intervenes to help when it detects that effects of a
human’s action were not as predicted, i.e. the human action
failed.

2.3. Initiative in human-robot interaction

In the context of human-robot collaboration, one study by
Gombolay et al. (2014) is particularly relevant. They inves-
tigate decision-making authority in the planning process
and find that people are willing to give control to the robot
for the efficiency benefits Gombolay et al. (2014). While
our results are consistent with theirs, our study differs in
its focus on authority over assistance timing during task
execution, as opposed to authority over assistance alloca-
tion during task planning. Groten et al. (2010) looked at
shared decision making in the context of haptic collabora-
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We note that joint human-robot task planning implicitly
addresses the question of when a robot should help by pro-
ducing a plan that specifies the order and timing of human
and robot actions. The key difference of the scenario con-
sidered in our work is that we do not assume pre-planning
of the task prior to execution. Rather, the allocation of task
components occur during task execution depending on both
the human’s and the robot’s behaviors.

2.2. Robot assistance and help

Given our emphasis on in situ, ad hoc collaboration, rather
than planned collaboration, previous work on robot help
is highly relevant. In fact, many of these relate to one or
more of the different help behaviors studied in this paper.
For example, the work of Kwon and Suh (2013) is akin
to our robot-initiated proactive help. Cuntoor et al. (2012)
consider human instruction as part of the collaboration,
similar to our human-initiated help condition. Najmaei and
Kermani’s prediction-based reactive control model for col-
laboration (Najmaei and Kermani, 2010) is akin to our
robot-initiated reactive help. Sakita et al. (2004) design dif-
ferent robot assistance behaviors triggered in different con-
ditions; such as taking over when both of the human’s hands
are occupied or providing verbal disambiguation when user

tions. Cakmak et al. (2010) investigated initiative in robot
question asking. In addition, the large body of work on
mixed-initiative control in the context of robot teleoperation
(Fong et al., 2003) has some relevance to our work.

2.4. Gaze in human-robot interaction

In human-human interaction, cues such as body language,
paralinguistic cues and gaze shift can be used to infer inten-
tion or make turn taking. In human-robot interaction as
well, similar cues can be used by the robot or the human
to infer each-other’s target and detect the right time to take
turn during collaborative tasks.

In this context, Huang et al. (2015a) presented a study
in which a robot prepares a sandwich using the ingredients
ordered by a human participant. By looking at the direc-
tion of the participants gaze, the robot can predict the next
command in an average of 1.8 s before the verbal indication.

Similarly, Mutlu et al. (2009) and Chao and Thomaz
(2010) present studies highlighting the importance of a
gaze for turn taking in the context of human-robot inter-
action and collaboration. Mutlu et al. then showed that user
could understand the robot’s turn-yielding up to 99% of the
times and therefore took turn accordingly 97% of the times
(Mutlu et al., 2009). Conversely, Chao et al. showed that
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Fig. 3. Particular instances of the tasks used in the user study: (a) Practice task, (b) to (d) three instances of Task A, and (e) to (g) three
instances of Task B performed by participants in the three different conditions.

human gaze can control the robot’s turn (Chao and Thomaz,
2010).

3. System
To study different help trigger mechanisms, we develop
an end-to-end system for joint task execution that allows
a robot to perform object manipulation actions as well as
monitor the execution of the same actions by a human. In
this section, we present the details of our system.

3.1. Platform

Our system is built around the PR2 robot platform (see

human), and both-allowed (middle). Task goals are repre-
sented as a conjunction of instantiated predicates; i.e the set
of relations that need to be true.

Our experiments involve six specific tasks from two task
categories (Tasks A and B) in slightly different domains. All
tasks in the same task category have the same set of pred-
icates in their initial state and goal descriptions. However,
specific tasks differ for particular objects and locations with
which the task is instantiated. Task A involves four objects
to be placed in four target locations on the tray. Task B
involves six objects to be arranged on two locations on the
tray. The two task categories are described in Figure 2(a)
and individual task instances are shown in Figure 3. For all
tasks, one object is placed on the robot-only zone so that
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Figure 1). PR2 has two seven degrees-of-freedom arms
giving it a large workable space for tabletop manipulation
tasks. Each arm has one degree-of-freedom parallel-finger
gripper that can grasp objects up to a width of 8 cm. PR2’s
arms are passively balanced and actuated with low-power
motors, making it safe to work around humans. For percep-
tion, it has a Kinect sensor attached to the head that has a
high-speed pan and tilt motion. Note that most of the sys-
tem was designed independently of the platform while the
action execution part was designed for and with the PR2.

3.2. Domain and task representation

We focus on joint preparation tasks. This category of tasks
shares many properties of tasks previously studied in the
context of human-robot collaboration (e.g. circuit building
(Hayes and Scassellati, 2013), lego model assembly (Sakita
et al., 2004), food preparation ?, industrial assembly (Niko-
laidis and Shah, 2013)), including partially ordered action
sequencing and shared physical space. More specifically,
we consider food tray preparation with n objects, m tray
locations and three non-overlapping table regions. Objects
can be uniquely recognized and their location is represented
as a 2D coordinate on the table. For each object, we also
represent its relation to other objects and targets with the
three predicates is-on(object), is-at(position),
and is-in(region). Note that is-on(object) is
inferred based on the task knowledge, while the two other
predicates are detected directly through the perception mod-
ule. The table is split into three regions based on who is
allowed to manipulate in them. These zones, depicted in
Figure 2, are: Robot-only (near robot), human-only (near

participants would need the robot’s assistance at least once.
Both the human and the robot are assumed to have one

task-relevant action: pick-and-place(object, x, y).
The x and y coordinates can be anywhere on the table,
including particular tray locations or on other objects. The
action is applicable for an agent (human or robot) only on
objects whose current location is within the regions allowed
to the agent. In our task scenarios, one object is initially
placed in the robot-only region for both tasks; two objects
are placed in the human-only region for Task B.

3.3. Robot perception

The robot can segment and recognize tabletop objects using
the point cloud obtained from the robot’s Red, Green, Blue
plus Depth (RGBD) sensor. It uses the point cloud library
implementation of tabletop segmentation, which detects the
table plane with the Random sample consensus (RANSAC)
algorithm. It then extracts a point cloud segment corre-
sponding to each object on the table. If an object is inside
or in contact with another object, they are segmented as one
object with possibly multiple colors. The robot represents
and recognizes objects based on their color, location on the
table and size extracted from the segmented point cloud.
Color is discretized into six values (red, blue, yellow, green,
pink and orange) and size into three values (small, medium
and large).

The robot then estimates the current environmental
state as the combination of all object states in the
scene. The state corresponding to each recognized object
is represented by the 3-tuple ( Color, Size, Location).
The “Location” variable contains one or several of
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Fig. 4. Model for helping robots: Recognizes the current environmental state, predicts the possible future states using a dynamic
Bayesian network and generates actions to achieve the desired end-states.
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the predicates is-on(object), is-at(position) and
is-in(region) presented in Section 3.2. For instance, if a
“small red cup” at the location l1 and a “medium blue plate”
in the “human-only” region are recognized in the scene,
the object states are noted s1 =( Red, Small, is-at( l1) ).

and s2 =( Blue, Medium, is-in( human-only)) In the case
the “small red cup” is on the “medium blue plate” at
the location l1, the corresponding state can be noted
s3 =( Red, Small, is-on( Blue, Medium, is-in( l1)). In prac-
tice however, when an object is on or in another object, they
are detected as one new object. In this case, the object state
would then be noted s3 =( {Red, Blue}, Medium, is-in( l1) ).

3.4. Robot actions

The robot’s pick-and-place actions are parametrized with
an object to be picked and a location at which the object
is to be placed. The actions are defined as a sequence of
poses relative to the object (pre-grasp, grasp, and lift poses)
followed by poses relative to the target location (transfer,
lower, and drop poses). While the overall action templates
remain the same, some of the poses in the actions are tuned
to the particular object being manipulated. The actions
were trained using a learning by demonstration approach
developed by Alexandrova et al. (2014).

3.5. Joint task execution model

The joint task execution model is built based on previous
research in which it was showed that instrumental help-
ing could be generated using a low level motivation signal
(Baraglia et al., 2014, 2015). This work supposes that due
to strong self-other correspondence, referred to as the “like-
me hypothesis” (Meltzoff, 2007), the robot can project its
own task state onto others performing similar acts. This
mechanism allows our system in the reactive and proac-
tive help conditions to assist users in achieving their tasks,
without the need for high level trigger signals.

Fig. 5. Two time-slice dynamic Bayesian network used in this
study. It is composed of two multinomial nodes S and A rep-
resenting environment states and actions. The grayed node S( t)
represents the observable state.

The overall system for joint task execution is illustrated
in Figure 4. At the core of this system are two modules for:

(a) tracking the state of the task and anticipating future
actions;

(b) selecting a robot action based on the observed and
anticipated states accreting to different help strategies.

More detailed descriptions of these modules are given in the
following sections.

3.5.1. Tasks state prediction module. Our system uses
dynamic Bayesian networks (DBNs) to predict future states
and the robot’s actions that lead to those states. DBNs
are multi-time-slice Bayesian networks where variables are
connected to one another over adjacent time steps as well
as within the same time step. They are a computationally
efficient generalization of hidden Markov models and have
been used to model multi-modal robot behavior in uncertain
environments (e.g. work by Huang and Mutlu (2014)).

For this study, we used two time-slices DBN. Each time-
slice of the DBN contains an object state and an action
node, corresponding to two multinomial discrete variables S
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and A. The used DBN architecture is illustrated in Figure 5.
S can be one of all possible states {s0, s1, ... , sN } that are
distinct according to the defined predicates for a finite set
of objects and named locations (Section 3.2). Two states
in which an object’s position is different, but both posi-
tions are not at a named location, are considered the same
discrete state. The variable A is one of all possible action
instances {a0, a1, ... , aM } that involve the combination of
all objects and named locations in the environment, regard-
less of whether they are available to the human or the robot.
S( t) represents the current observed object states in the
scene, and S( t + 1) the predicted states at time t + 1.

Fig. 6. Examples of task knowledge represented as states transi-
tion. Object o1 can be one of two states: s11 or s12 if positioned
in l1 or l2, respectively. Object o2 can be one of two states: s21 or
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Within a single time-slice, the state influences the action.
Between consecutive time-slices, the state and action from
the previous time-slice influence the next state.

The DBN encodes the task knowledge in the conditional
probabilities P( A( t) |S( t)) and P( S( t + 1) |S( t), A( t) ),
which represent the action policies the robot could use if
it were to execute the task on its own. Since the tasks
are known a priori in our scenario, these conditional prob-
abilities were computed based on the known task struc-
ture (Section 3.2), assuming each path for completing the
task is equally likely. To estimate the conditional proba-
bilities P( S( t + 1) |S( t), A( t) ), we use a maximum likeli-
hood parameter algorithm from a set of pre-defined data.
The data are in the form of a list of state-action transi-
tions, such as S( t) = s0 ! A( t) = a0 ! S( t + 1) = s1.
Future states and actions are predicted by computing the
marginal probabilities P( S( t + 1)) using Bayesian infer-
ence. The action A( t) to perform in order to transit from
S( t) to S( t + 1) is inferred by maximizing the conditional
probability P( S( t +1) |S( t), A( t) ) given a known S( t +1).
The result of the predictions are then sent to the action
selection module. This approach is efficient and works well
with fairly complex tasks. However, it may not be suitable
for big state-space as the number of operations to perform
the Bayesian inference is quadratic (O( n2)). Improving the
task state prediction module framework could help reduc-
ing the calculation time. For instance, a factored Markov
decision process (Degris and Sigaud, 2010) could reduce
the amount of conditional probabilities to calculate for each
robot’s decision making.

To illustrate these mechanisms, let us imagine a task in
which a table containing two objects should be cleaned (see
Figure 6). The robot’s task knowledge, known a priori, con-
tains the necessary information to represent a task. The two
objects are “small red cup”, noted o1, and a “medium blue
plate”, noted o2. The table is separated in two discrete loca-
tions: l1 = “dirtyZone” and l2 = “cleanZone”. The possible
object states in this example are:
s11 =( red, small, is-in( l1) ),
s12 =( red, small, is-in( l2) ),
s21 =( blue, medium, is-in( l1) ),
s22 =( blue, medium, is-in( l2) ).
The initial environmental state contains the two object
states s11 and s21. The robot can perform pick and place

s22 if positioned in l1 or l2, respectively. The initial environmental
state contains two object states: s11 and s21.

actions, noted a1 and a2, to move the “small red cup” or the
“medium blue plate”, respectively, from l1 to l2.

The transitions between the different object states as
described in the task knowledge are illustrated in Figure 6.
When s11 and s21 are initially recognized by the robot,
marginal probabilities P( S( t + 1) ) are calculated individ-
ually for each object state. As we assume all paths for
completing the task are equally likely for this task, we
obtain

P( S( t + 1) = s11) = 0, P( S( t + 1) = s12) = 0.5,
P( S( t + 1) = s21) = 0 and P( S( t + 1) = s22) = 0.5

The system then infers what actions to perform in order to
achieve the predicted environmental states by maximizing
the conditional probabilities P( S( t +1) |S( t), A( t) ), which
are in this case equal to

P( S( t + 1) = s12|S( t) = s11, A( t) = a1) = 1
P( S( t + 1) = s12|S( t) = s11, A( t) = a2) = 0
P( S( t + 1) = s22|S( t) = s21, A( t) = a1) = 0
P( S( t + 1) = s22|S( t) = s21, A( t) = a2) = 1

Here also, conditional probabilities are calculated individu-
ally for each object state.

In this example, the robot estimates that it can perform
a1 or a2 in order to reach s12 or s22, respectively, from the
currently observed object states s11 and s21. When a new
state is reached, the robot reiterates the same inference pro-
cess until it can no longer predict new states. When reaching
S = s12, s22, the system cannot predict future states based
on its task knowledge, and therefore considered the current
state as an end-state (or absorbing states).

When to perform an action and which action to execute
is decided by the action selection module presented in the
next section.

3.5.2. Action selection module. The action selection mod-
ule implements a policy that specifies what the robot should
do at each time step. If the robot were to execute the task
completely on its own, this module would directly return
one of the possible actions predicted by the DBN imme-
diately after every action. During joint task execution, on
the other hand, the robot’s policy needs to account for the
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Fig. 7. Examples of object detection likelihood estimation. The value increases if the object is recognized and decreases when it is not.
If the object detection likelihood decreases bellow the detection threshold, the object is lost.

human’s direct input or their actions that result in changes
in the world state. We implement three policies that differ
in terms of when a robot action is triggered.

1. Human-initiated help (H): The first policy gives com-
plete control of robot actions to the user. The robot
performs an action only when the user explicitly says
“Robot, can you help me?’

2. Robot-initiated reactive help (R): In the second pol-
icy, robot actions are initiated by the robot when it
detects that help is needed. The robot tries to detect
when one of the next states predicted by the DBN is
not reached within an expected time window, indicating
a delay or user difficulty in the task progress.

3. Robot-initiated proactive help (P): The third policy
involves performing actions whenever they are possible.
However, different from a robot-only task execution,
the robot needs to take into account human actions that
might be in progress before a stable environmental state
is reached. As the robot is not equipped with the ability
to detect human actions, this is done indirectly by look-
ing at whether or not the observed object’s states are
stable. If at least one executable action exists that does
not conflict with human actions, the trigger is initiated.

Mechanisms behind the robot’s behavior for each policy
are similar, but differ in some fundamental aspects. When
the system observes object states S( t), it predicts future
object states S( t + 1) that have non-null marginal probabil-
ities as shown in Section 3.5.1. Object states are noted sij,
where i is the object number and j represent the objects loca-
tions. Actions on an object i are noted ai. To decide which
action should be performed by the robot, several values are
estimated.

1. Firstly, for each possible future object state, an object
detection likelihood, noted Lsij( t+1), is calculated. The
value is initialized at 0.6 and increases linearly while
the object is recognized (max. 1). This value represents
how well an object corresponding to a predicted state
is recognized by the perception module. If the object
is momentarily not perceived, Lsij( t + 1) decreases
linearly. If Lsij( t + 1) becomes lower than 0.4, the
object is considered lost. For instance, if a user repeat-
edly touches an object in the scene, the corresponding

Lsij( t + 1) will be low because the object recognition

will be noisy. Examples of object detection likelihoods
for good and bad object recognitions are represented in
Figure 7.

2. Secondly, a trigger signal, noted T sij( t + 1), is esti-
mated for each possible future object state. The value
of T sij( t + 1) is a function of Lsij( t + 1) and of the
elapsed time, noted t

!
, since the current environmental

state S( t) has been first recognized.

A trigger signal T sij( t + 1) is activated when Lsij( t + 1)
gets higher than a threshold (!) fixed at 0.8. When a trig-
ger signal is activated, the robot executes the corresponding
action ai. The starting value of Lsij( t + 1) and its differ-
ent thresholds were chosen empirically to ensure that the
objects are well recognized before triggering a signal, and
are detected even with noise and brief occlusions.

The trigger signals are calculated as follows:

1. In condition H, when a user asks the robot for help, the
trigger signal with the highest object detection likeli-
hood Lsij( t+1) value is activated. If two or more trigger
signals have the same object detection likelihoods, the
trigger signal with the action on the closest object to the
robot is activated. The distance between the robot and
an object is noted di.

2. In condition R, when possible future states are pre-
dicted, the trigger signal values are calculated as func-
tion of the elapsed time t

!
and the corresponding object

detection likelihood as follows

T sij( t + 1) = 0.3 " Lsij( t + 1) "

(
t! ! T

T

)

(1)

where T represents the action duration and defines how
quickly the trigger signals increase, and therefore cor-
responds to the robot reaction time in the reactive con-
dition. It was here fixed at 4 seconds empirically so that
the robot reaction time is neither too fast or too slow.
If one trigger signal gets higher than the threshold !, it is
activated. If two or more trigger signals are higher than
! at the same time, the trigger signal with the lowest di

is activated.
3. In condition P, when possible future states are predicted,

the trigger signal values are calculated as function of the
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corresponding object detection likelihood only

T sij( t + 1) = Lsij( t + 1) (2)

If one trigger signal gets higher than !, it is activated. If
two or more trigger signals are higher than ! at the same
time, the trigger signal with the lowest di is activated.

The robot always uses the gripper closest to the object of the
executed action. In addition, if two or more trigger signals
are activated at the same time, the one corresponding to the
closest object is always preferred.

Let us now consider the example where our system and a
user jointly collaborate during the task presented in Section
3.5.1 (see Figure 6). At first, the robot detects the current
environmental state, noted S( t). The tasks state prediction
module then predicts possible future object states S( t+1) =
s12 or S( t + 1) = s22. The action to reach s12 is estimated to
be a1. The action to reach s22 is estimated to be a2. When the
states are predicted, the robot estimates for each of them an
object detection likelihood value Ls12( t+1) and Ls22( t+1).

In all conditions, if the next state is correctly reached by
the robot or by the user, the tasks state prediction mod-
ule predicts new future states. In this example, if s12 is
reached, the new predicted states will be S( t + 1) = s22.
Conversely, if s22 is reached, the new predicted states will
be S( t + 1) = s12.

In the H condition, the robot will not perform any of the
actions until it receives a command. In the R condition, if
the predicted states are not achieved within a few seconds,
the trigger signal values will increase. If the user performs
an action before any of the trigger signal values reach the
threshold, the robot does nothing. Else, if one of the trigger
signal value reaches the threshold, the robot performs the
corresponding action. Finally, in the P condition the robot
performs an action as soon as possible, namely when one of
the object detection likelihood corresponding to predicted
states is higher than the threshold.

4. User study

The help trigger mechanisms described in Section 3.5.2
are expected to yield different joint task execution dynam-
ics. Furthermore, each mechanism on its own can result
in a wide variety of behaviors depending on the particu-
lar user. For example, when interacting with the human-
initiated policy, users may request help at every step or only
when they need it. When interacting with the robot-initiated
proactive policy, they might select their own actions such
that the robot has many opportunities to help or they might
(unintentionally or intentionally) block the robot’s actions.
The differences across and within each policy can reflect
on objective task execution measures, as well as the user’s
subjective attitude towards the robot. To investigate these
differences, we performed a user study that allows us to:

(a) characterize people’s behaviors while interacting with
each policy;

(b) compare the alternative policies for triggering robot
help.

4.1. Study design

We performed a within participants study with one inde-
pendent variable (robot helping behavior) with three con-
ditions: H, R, P (Section 3.5.2). In each condition, partic-
ipants performed two tasks with the robot, one from each
category (Task A and B). The order of the three conditions
were counterbalanced.

4.2. Study setup

The robot was placed in front of a 68 cm high table. Par-
ticipants sat across the table. The table top was separated
into three zones as shown in Figure 3. Participants were
asked not to touch objects that are in the red zone (near
the robot). Similarly the robot could not enter the blue zone
(near the human). Both were allowed to manipulate objects
in the middle zone. In the middle of the table there was a
tray with four target positions.

Tasks were explained to participants with a one page
pictorial description involving:

(a) the set of objects and targets involved in the task;
(b) the final state of the tray when the task is complete.

An example task description is shown in Figure 2(b). An
additional small table was placed to the right of the partic-
ipant. Printed task descriptions were placed on this table,
together with a tablet for logging task steps (see Sec-
tion 4.3) and a laptop for responding to our questionnaire.
The complete setup can be seen in Figure 1.

4.3. Procedure

Participants were recruited from a campus and nearby
neighborhoods through mailing lists. Interested individu-
als signed up for a 45 minutes time slot in advance. When
participants arrived at their scheduled study time, we first
explained the purpose of the study and asked them to sign
a consent form. Then they were taken to the participants
seat, introduced to the robot and the workspace, and given
an overview of the procedure.

Next, the robot was activated and participants performed
a practice task (Figure 3(a)). The task was explained to them
using the corresponding pictorial description. The robot
made a specific sound to indicate that it was ready. Par-
ticipants were told that they can start the task when they
hear this sound. They were told to perform one step of
the task and then log the step on the tablet. The logging
was done throughout the study as a mechanism to space
human actions apart and give the robot an opportunity to
detect intermediate states of the task. Each log required
indicating who performed the step (human or robot), the
two letter identifier for the object involved (as indicated in
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the task description), and the one letter identifier for the tar-
get position where the object was placed. The second step
of the task was performed by the robot to familiarize par-
ticipants with the robot’s motion. The robot made another
sound when it detected the task completion. Participants
were told that they will perform similar tasks together with
the robot in three conditions where the robot’s behavior will
be different.

Next we moved on to the actual study. For each condition,
the experimenter first gave condition specific instructions.
In the human-initiated help (H) condition, participants were
told that they can request the robot’s help by saying “Robot,
can you help me?”. This was done in a wizard of Oz fash-
ion and without using a microphone. As soon as users asked
for help, the experimenter discreetly pressed a button. In
the other conditions (R and P), they were told that the robot
will decide when and how to help out with the task. Then
the experimenter set up the initial state of the first task,
told participants to start when they hear the robot sound,
and left them alone with the robot. The experimenter came
back to set up the next task after the robot detected that
the task was complete. After completing both tasks in the
same condition, participants were asked to respond to the
condition-specific questionnaire. After all three conditions
were complete, participants responded to additional ques-
tions drawing comparisons between the three conditions.
At the end, participants were thanked for participating and
given the promised compensation of a 10 USD equivalent
gift card.

4.4. Measurements

The study was recorded from two cameras; one mounted
on the robot’s head and another overseeing the workspace
together with the robot and the participant. In addition,
we logged the progression of tasks and robot actions with
timestamps throughout the study. The extracted data was
used to evaluate three main components: The social aspect
of the interaction, the quality of interaction and the system
performance.

From the study logs we extracted the task comple-
tion time and the number of actions performed by each
agent. From the videos we extracted quantitative measure
that characterized each participant and the robot behav-
iors. These measures included times when the robot and
the human were moving alone or in concurrence, their
idle times and the number of gazes the participants per-
formed to the face of the arms of the robot during the joint
task execution. The coding was performed by two coders
(IRR "= 0.72), including one without prior knowledge of

the study.
To compare the three conditions subjectively from the

asked them to describe their strategy. Then we asked a set
of Likert scale questions, similar to those commonly used
in human-robot collaboration research (Hoffman, 2013).
These questions addressed the user’s perception of: The
robot’s helpfulness, its awareness of the human and task
progress, its contribution to the task, team fluency and effi-
ciency and naturalness of the interaction (see questions in
Figure 13). Additional questions at the end asked a forced
ranking of the three conditions and open ended questions
about perceived distinction between the two robot-initiated
conditions and how different behaviors would be combined
in an ideal interaction.

5. Findings

Our study was completed by 18 participants (nine females
and nine males aged 18 to 35). This section presents our
findings based on data collected from these participants. A
repeated-measure Analysis of variance (ANOVA) was con-
ducted to compare the effect of conditions H, R and P within
subjects on the different objective metrics. We used an alpha
value of " = 0.05, which set the F-critic at Fcrit = 3.26
(see F-table for dfBetween = 2 and dfError = 34). We per-
formed post-hoc tests (two-tailed paired-t-test) to explore
differences between pairs of conditions.

To analyze the experimental data, we segmented each
interaction between a participant and the robot into tempo-
ral action sequences. These actions could be of three types
for the participants: Acting (upon the table), logging or
idling; and two types for the robot: Acting or idling. Based
on these temporal action sequences, we could also extract
concurrent actions between the participants and the robot.
Additionally, we segmented the different gazing patterns of
the participants to the robot’s face and arms. Two examples
of interactions for each of the three condition during the
Task B are shown in Figure 8(a) to (f).

5.1. Objective metrics

We first examine common task and collaboration metrics.
Figure 9(a) shows the average number of task actions per-
formed by the robot in each condition (Task A: F( 2, 34) =
20.95, p < .05; Task B: F( 2, 34) = 20.65, p < .05) and
Figure 9(b) shows the overall task completion times by
the human-robot team (Task A: F( 2, 34) = 3.63, p < .05;
Task B: F( 2, 34) = 6.68, p < .05).

Figure 10(a) to (d) shows the breakdown of task com-
pletion times into robot-only, human-only, concurrent, and
no motion segments and Figure 10(e) to (f) separately show
the human idle time and robot idle time. The results of the
ANOVA for results in Figure 10 are as follows:

(a) (Task A:F( 2, 34) = 9.41, p < .05; Task B: F( 2, 34) =
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user’s perspective, we administered several questions after
each condition as well as at the end. First we asked an
open ended question to elicit the participants own descrip-
tion of the robot’s assistance behavior. Another question

21.99, p < .05);(b) (Task A: F( 2, 34) = 12.26, p < .05; Task B: F( 2, 34) =
1.07, p > .05);

. " Cohen’s kappa.
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Fig. 8. Examples of interactions.

(c) (Task A: F( 2, 34) = 3.55, p < .05; Task B: F( 2, 34) =
3.09, p > .05);

(d) (Task A: F( 2, 34) = 6.23, p < .05; Task B: F( 2, 34) =
10.71, p < .05);

(e) (Task A: F( 2, 34) = 3.73, p < .05; Task B: F( 2, 34) =
14.09, p < .05);

(f) (Task A: F( 2, 34) = 6.79, p < .05; Task B: F( 2, 34) =
7.38, p < .05).

Finally, Figure 12(a) to (d) shows the number of times
the participant looked at the robot’s face and arms and the
average duration of the gazes. The results of the ANOVA
for results in Figure 12 are as follows:

(a) (Task A: F( 2, 34) = 3.81, p < .05; Task B: F( 2, 34) =
10.83, p < .05);

results in the robot having a greater contribution to the task,
as indicated by the significantly higher number of actions
performed by the robot (Task A: p < .001, Task B: p <
.001) (Figure 9(a)). This is also reflected in the significantly
lower robot idle times for the proactive robot (P) as com-
pared to the reactive robot (R) (Task A: p < .001, Task B:
p < .05) (Figure 10(f)). The average number of actions
performed by the reactive robot was around 1 (Task A:
M = 1.17, SD = .38, Task B: M = 1.56, SD = .76),
which is the minimum number of actions required by the
robot. Whereas, the proactive robot performed around 2
(Task A) and 3 (Task B) actions (Task A: M = 2.17, SD =
.48, Task B: M = 3.00, SD = .82), which are about
half of the actions needed to complete the task. This find-
ing is expected and confirms that our model produced the
intended behavior.
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(b) (Task A: F( 2, 34) = 12.30, p < .05; Task B: F( 2, 34) =7.55, p < .05);
(c) (Task A: F( 2, 34) = 12.49, p < .05; Task B: F( 2, 34) =

2.67, p > .05);
(d) (Task A: F( 2, 34) = 1.91, p > .05; Task B: F( 2, 34) =

6.64, p < .05).

5.1.1. Proactive versus reactive: First we focus on the
comparison of robot-initiated help strategies. Proactive help

Despite the difference in the number of robot actions,
there was no significant difference in the total task dura-
tion in Task A (Task A: p = .12) and little difference in
Task B. A potential reason for this could be lack of paral-
lelization between human and robot actions. However, the
significant increase in the concurrent human-robot motion
(Figure 10(c)) in the proactive condition indicates that par-
allelization did indeed happen at least in Task A (Task A:
p < .005). In addition, the total task duration appeared
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Fig. 9. (a) Number of actions performed by the robot for each task category in each condition. (b) Task completion time for each task
category in each condition. Error bars represent standard deviation.

Fig. 10. Breakdown of task completion times into (a) robot-only, (b) human-only, (b) concurrent and (d) no motion time segments.
These include only motion related to the joint task. (e) Human idle time. This excludes the time during which the human is performing
their secondary task of logging task actions. (f) Robot idle time.

to be greatly influenced by the difference in human and
robot action speeds as humans are several orders of mag-
nitude faster at pick-and-place actions. Hence they were

(H-R - Task A: p < .05) (Figure 10(c)). We believe that it is
because participants asked for help and then started doing
their own actions as soon as they understood the robot’s
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not slower in completing the overall task in the reactive
condition. Despite this difference, human idle times were
not significantly higher in the proactive robot condition (P)
(Figure 10(e)).

5.1.2. Human-initiated versus robot-initiated. Next, we
look at comparisons between the human-initiated help (H)
condition and robot-initiated help conditions to characterize
how people chose to get help from the robot when they had
control. From Figure 9(a), we see that the number of actions
performed by the robot in the H condition was about half of
all task actions, as in the P condition. The number of actions
performed by the robot was significantly higher than in the
R condition (H-R - Task A: p < .001, Task B: p < .001).
It resulted in significantly higher concurrent motions in
Task A for the H condition compared to the R conditions

intention. This is similar to the P condition, where partic-
ipants briefly waited until they recognized what the robot
was doing and then acted. The added waiting time in the
H condition was reflected in overall task completion times
(Figure 9(b)), which was significantly higher than in the R
condition for Task B (H-R - Task B: p < .005) and in the
P condition for both tasks (H-P - Task A: p < .05, Task
B: p < .05). This was also reflected in the human idle times
(Figure 10(e)) which was highest for the H condition in both
tasks (H-R - Task A: p = .27, Task B: p < .001; H-P -
Task A: p < .05, Task B: p < .01). We noticed that one
participant made the robot do all actions for Task 1; two par-
ticipants made the robot do all possible actions for Task 2
in the H condition. This contributed to the high human idle
time and task completion time, while making the variance
in this condition high.
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Fig. 12. (a) Average number of gaze to the face of the robot; (b) average number of gaze to the robot’s arms; (c) average duration of
each gaze to the face of the robot; (d) average duration of each gaze to the robot’s arms.

p < .001) (see Figure 12(a)). The average gaze dura-
tion was also significantly longer in the H condition during
Task A (H-R - Task A: p < .005; H-P - Task A: p < .005)
(see Figure 12(c)). This can be explained by the participants
having to vocally command the robot when needing the
robot’s help. In fact, the participants almost always gazed
to the robot’s face when asking for help and kept gazing
until the robot would start its action.

The number of gazes to the arms of the robot is signifi-
cantly greater for the H and P conditions compared to the R
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Fig. 11. Gazing zones: The face gaze zone (purple line) is situated
on the robot’s “head” part. The arms gaze zone (red line) is situated
on the lower body part of the robot.

5.1.3. Gaze. We then look at the participants’ gazing pat-
terns toward the robot during the different tasks. Two gazing
targets were analyzed: The robot’s face and arms zones,
which are shown in Figure 11. The number of times the par-
ticipants looked at each zone and the duration of each gaze
were extracted from the video recording of the experiment.
The gazes to the robot’s arms were only counted when the
robot was moving its arms.

The number of gazes to the face and arms of the robot are
described in Figure 12(a) and (b), respectively. The average
duration of each gaze to the face and arms of the robot is
described in Figure 12(c) and (d), respectively.

The participants gazed significantly more to the face of
the robot in the H condition compared to the R and P condi-
tions during Task B (H-R - Task B: p < .05; H-P - Task B:

condition in Task A (H-R - Task A: p < .05; R-P - Task A:
p < .001) and greater in condition P compared to the R con-
dition in Task B (R-P - Task B: p < .001) (see Figure 12(b)).
This result is strongly correlated with the number of actions
performed by the robot (see Figure 9(a)). We argue here that
the amount of gaze to the arms is an artifact of the logging
requirement. Indeed, gazing to the robot’s arms allows the
participants to identify its actions and to log them as part of
the task. Therefore, if the robot executes more actions, the
number of gazes should increase proportionally.

Next, we found that the average gaze duration to the
robot’s face and arms was significantly longer in the H con-
dition compared to the two others in Task B (H-R - Task B:
p < .05; H-P - Task B: p < .05) (see Figure 12(d)). The
average gaze duration was correlated to the tasks average
completion time (see Figure 9(b)) with a Pearson product-
moment correlation coefficient (hereafter noted Pcoef). We
found significant correlation between the average comple-
tion time and face gazes, but not with arm gazes: (Cond H
- Task A: Pcoef = 0.57, p < .05; Task B: Pcoef = 0.60,
p < .05; Cond R - Task A: Pcoef = 0.50, p < .05; Task B:
Pcoef = 0.42, p > .05; Cond P - Task A: Pcoef = 0.76,
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p < .05; Task B: Pcoef = 0.31, p > .05). In the case of face
gazes, this can be explained by the fact that users looked
at the robot’s face after asking for help and kept looking
until the robot started moving. However, users only looked
at the robot’s arms when it was moving, which explains the
absence of correlation.

In addition, we found correlations between gazes to the
face and to the arms and some objective metrics. In stud-
ies by Huang et al. (2015a) and Mutlu et al. (2009), it was
shown that gazes could be strong indicators for turn taking
or intention prediction. As our experiment involves a human
and robot performing joint tasks, turn taking is an intrinsic
part of the interaction. By observing the cues given by the
users’ gaze, the robot could for instance predict when they
need help and be more efficient at helping. To find out if
such cues were given by the participants, we looked at the
participants’ gazes 5 to 15 seconds prior the onset on the
robots’ action. In the human-initiated condition, 70.56% of
all face gazes preceded a robot action (Task A: 76.67%;
Task B: 64.44%). In the robot-initiated reactive help, this
value is 24.96% (Task A: 23.81%; Task B: 25.93%). In the
robot-initiated proactive condition, it is 17.23% (Task A:
10.64%; Task B: 23.81%). These results indicate that users
gaze to the face of the robot more when they need to ask
the robot for help than when the robot acts by itself. How-
ever, they also receive slightly more gaze when the robot
was reactive rather than proactive. It shows that the more

Pcoef = 0.65, p < .05). These results give us the following
insights on the interaction.

1. Users looked more at the face of the robot when it acted
alone (“robot only” and “human idle”), showing signs
that users tried to understand the robot’s intention.

2. Users also gazed more at the face of the robot when
it was not moving (“no motions” and “robot idle”),
arguably because users were waiting for the robot to
take its turn as shown by Chao and Thomaz (2010) and
Mutlu et al. (2009).

3. Users gazed more at the robot’s arms when it was mov-
ing alone and when users were logging (“robot only”),
as already observed in the results presented in the
previous paragraph.

5.2. Subjective metrics

Participant responses to the Likert-scale questions are sum-
marized in Figure 13. The inter-condition differences were
analyzed using the Wilcoxon signed rank test (we also con-
ducted parametric tests and obtained similar results). which
is a standardly used non-parametric test. As suggested in the
work by Carifio and Perla (2007) and to avoid family-wise
errors, we grouped the seven scales into two sub-scales rep-
resenting the quality of interaction (Figure 13(a)) and the
system performance (Figure 13(b)). There were no statis-
tically significant differences between the human-initiated
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fluent the robot was during the collaborative tasks, the less
users gazed to its face. We suggest that when the robot was
acting more, the users focused on their logging task and
their own actions rather than monitoring the robot.

Finally, we correlated gaze patterns and the objective
metrics presented in Figure 10. We used again the Pear-
son product-moment correlation coefficient. We found that
the average “robot only” time is correlated with the amount
of gaze to the face (Cond H - Task A: Pcoef = 0.51,
p < .05; Task B: Pcoef = 0.53, p < .05; Cond R -
Task A: Pcoef = 0.53, p < .05; Task B: Pcoef = 0.57,
p < .05; Cond P - Task A: Pcoef = 0.38, p > .05; Task B:
Pcoef = 0.23, p > .05) and to the arms (Cond H - Task A:
Pcoef = 0.47, p < .05; Task B: Pcoef = 0.77, p < .05; Cond
R - Task A: Pcoef = 0.82, p < .05; Task B: Pcoef = 0.60,
p < .05; Cond P - Task A: Pcoef = 0.66, p < .05;
Task B: Pcoef = 0.31, p > .05). Next, we found correlation
between “no motion” and gazes to face (Cond H - Task A:
Pcoef = 0.48, p < .05; Task B: Pcoef = 0.30, p > .05; Cond
R - Task A: Pcoef = 0.62, p < .05; Task B: Pcoef = 0.46,
p > .05; Cond P - Task A: Pcoef = 0.67, p < .05; Task B:
Pcoef = 0.39, p > .05). “Human idle” is also correlated to
the amount of gazes to the robot’s face (Cond H - Task A:
Pcoef = 0.47, p < .05; Task B: Pcoef = 0.53, p > .05; Cond
R - Task A: Pcoef = 0.44, p > .05; Task B: Pcoef = 0.86,
p < .05; Cond P - Task A: Pcoef = 0.68, p < .05; Task B:
Pcoef = 0.19, p > .05). As well as “robot idle” and gazes to
face for Task A (Cond H - Task A: Pcoef = 0.48, p < .05;
Cond R - Task A: Pcoef = 0.63, p < .05; Cond P - Task A:

help (H) and proactive robot (P) conditions in any of the
sub-scales, despite the differences observed in objective
metrics (e.g. the task completion time shown in Figure 9(b))
between these two conditions.

Subjective ratings of the quality of interaction appeared
to be correlated with the number of actions performed by
the robot (Figure 9(a)), rather than the overall task effi-
ciency (Figure 9(b)). The reactive robot (R) condition was
rated significantly lower than the other two (H and P)
conditions, indicating that participants agreed significantly
more that the quality was better in the H and P condi-
tions (see Figure 13(a)). Whereas the significant differences
were observed in the quality of interaction, participants did
not rate differently the system performance. It seems they
did not attribute the robot’s behavior in the R condition to
its inability to perceive the human or keep track of task
progress.

In the forced ranking question administered at the very
end of the study, 72% of participants (13/18) indicated P as
their most preferred behavior, while 22% (4/18) indicated
H and only 6% (1/18) indicated R. 78% of participants
(14/18) indicated R as their least preferred behavior, with
17% (3/18) for H and 6% (1/18) for P. The question yielded
a clear ranking of the three conditions as P > H > R from
most preferred to least preferred. Furthermore, in separate
two-choice questions, 67% of participants (12/18) indicated
they prefer letting the robot take initiative, while the remain-
ing 33% said they preferred having control over the robot’s
actions.
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Fig. 13. Mean Likert-scale ratings in questionnaire responses. Significant differences according to Wilcoxon signed rank tests are
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indicated with p-value ranges.

These results demonstrate that although there were no
significant differences between the H and P conditions in
the Likert-scale ratings, people are more likely to pre-
fer P over H in favor of the improved objective metrics
(Section 5.1).

5.3. Perceived differences of robot strategies

An open-ended question asked participants to describe the
differences between the two conditions R and P in which the
robot decided when to act, if they noticed any difference at
all. All participants reported that they noticed a difference.
The reactive robot was perceived as “slow” and charac-
terized as “lazy” and “hesitant” by some of the partici-
pants. The proactive robot, on the other hand, was perceived
“fast” and “pro-active”. Descriptions of the perceived robot
behaviors were accurate; for example:

• M, 35: “... [P] felt more natural to have unprompted

collaboration while I was performing the task, rather
than the robot waiting for me to finish as it did during
[R]”;

• M, 20: “[P] was more proactive in its help ... [R], by

contrast, would only complete actions that I was unable
to complete”;

• M, 22: “[In P] the robot took the initiative a lot more

than [R]”.

These answers clearly highlight that the participants
understood how the robot was behaving in the P condi-
tion, but did not feel that the robot was very motivated to
help in the R condition. This understanding of the proactive
robot’s “mind” may be the reason why participants rated this
condition as their favorite.

5.4. Collaboration enhancing human behaviors

The differences in the objective and subjective task met-
rics can be further dissected by examining the occurrence of
certain events. Firstly, we saw that concurrent motion was
significantly higher in the P and H conditions for Task A
(Figure 10(c)), which shows better team work took place
in these conditions. Secondly, in Task B, two objects (a
container and a ball) were placed in the human-only zone.
We observed that most people intuitively encouraged col-
laboration by starting tasks with objects that were in the
human-only region of the table. Indeed, in the H and P con-
dition, only three participants on average did not start with
the ball in the human-only zone. In the R condition, seven
users started with one of the balls placed in the both-allowed
zone, showing lower collaboration. Participant descriptions
of their strategies, in a free form question in the question-
naire, reflected their intent to enhance the collaboration; for
example:

1. F, 22: “[In R] I chose objects closest to me or that were
obscuring the place of the objects needed to be. I also
moved slower than I would without the robot to give it
time to help”.

2. M, 19: “[In H] I first wanted to set up the two bowls on
the table before putting any of the balls in. This was to
ensure that [the robot] would not attempt to put a ball
in a space without a bowl”.

3. F. 24: “[In P] I Moved the bowls and objects from the
blue zone first and then help fill them [the bowls] one at
a time”.

One participant placed the objects from his zone into
the common central zone to make the robot perform the
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task actions while he would perform the logging task. He
described his strategy as:

1. M, 19: “[In P] I moved objects from the blue zone into
the collaboration zone, and placed objects in-between
logging and [the robot’s] actions”.

6. Discussion

Our study demonstrated that the behavior of the proactive
robot was similar to the behavior people asserted when they
had control over the robot’s actions. In turn, the similar high
subjective rating of the proactive and the human-controlled
robots could be partially ascribed to this similarity. Fur-

3. M, 35: “I would ideally be able to give a couple of dif-
ferent command requests. The first command would be
to move the pieces I cannot reach. The second command
would be to just generally help out”.

With our novel gaze analysis, we showed that the proac-
tive and the reactive robots received less gazes to the face
than the human-initiated robot (significantly in task B). It
is suggested by psychologists that face-gaze (or eye-gaze)
is an important component of social interactions (Argyle
and Cook, 1976; Emery, 2000) and mutual understanding
(Myowa-Yamakoshi et al., 2012; Tomasello et al., 2005),
which contribute to natural interactions. In addition, we
observed that the proportion of gazes to the face prior
to a robot’s action gets higher as the robot becomes less
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thermore, we showed from the subjective ratings that the
behavior that was common in these two conditions is more
natural and fluent. Participants indeed described the robot’s
behavior during the proactive condition much better than
for the reactive one, attesting of a better understanding of
the robot’s “mind”.

On the question of whether a robot should take initia-
tive, our results demonstrate that the answer depends on the
robot’s behavior. People would willingly give away control
if the robot is proactive, but they would rather have con-
trol if it is reactive. Given its other benefits in terms of
objective task and team metrics, this suggests that collab-
orative robots should be designed to always be proactive.
Another interpretation is that users prefer robots that are
more consistent and reliable, which was the case for the
proactive robot. In this case, the predictability of the robot’s
actions should be improved to maximize the subjective and
objective ratings.

In practice however, a proactive robot might not always
be possible. Challenges such as partial task knowledge and
uncertain perception might reduce the robot’s ability to help
the user when it is actually possible for it to help. While the
simplistic help request used in our experiments would not
be sufficient, enabling users to ask for particular types of
help by commanding actions could result in more effective
collaboration in such circumstances. This argumentation is
supported by the answer to an open question asked during
the final questionnaire: “How would you combine the differ-
ent robot behaviors in an ideal robot assistant?”. Some users
answered that they would like a robot that first helps when
asked or when needed, and can become more proactive on
command.

1. F, 19: “In an ideal robot assistant scenario, the robot
would automatically decide to help when it was clear
that the robot’s help was needed; however, I would also
be able to tell the robot when to help further”.

2. M, 20: “I’d like to control the robot by giving him com-
mands. Also he should react fast upon my calls. Maybe
it would be better if I could tell him how to help me, like
telling him which object to should he move, in this task
for instance”.

autonomous, which appears to be related to turn taking cues
as shown by Mutlu et al. (2009). Our correlation analysis
results further revealed relations between gazes, intention
understanding and turn taking.

Based on our gaze analysis results, we argue that if the
robot is capable of taking turn autonomously, gazing to its
face to give it turn (or to ask for help) would no longer
be critical for efficient and natural interactions (e.g. lesser
gazes to the face observed for the proactive robot). How-
ever, we suggest that gaze cues for turn taking and intention
recognition should be used in scenarios where a robot is
expected to interact socially and naturally with humans,
while still being efficient and proactive.

The overall implication of our study is that mixed-
initiative help triggers seems to be ideal for efficient col-
laborations in realistic settings. Increasing pro-activity over
time, after observing the user’s collaboration preferences
(e.g. the work by Nikolaidis and Shah (2013)) might
improve the collaboration, while benefit from the social
aspect of the early human-initiated behavior. Finally, our
study showed that human gaze toward the robot’s face
or arms can be interpreted as an intention cue or turn-
taking signals that can be used to further improve the effi-
ciency of human-robot interactions and lead to more natural
collaboration.

From these various insights, we suggest two future work
directions that could improve the efficiency of human-robot
joint task collaboration: First, varying the robot’s initia-
tive based on experience and preference during the inter-
action with humans; second, taking into account gazes to
the robot as turn-taking and intention cues to either trigger
initiative or act upon specific objects desired by the human
collaborator.

7. Conclusion

We developed a joint task execution system that
autonomously performs a number of object manipulation
tasks as well as monitoring end-to-end human task exe-
cutions. Our system uses a dynamic Bayesian network to
predict future environmental state and is capable of easily
switching between various assistive behaviors.
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We addressed the questions of whether and when a robot
should take initiative during joint human-robot task execu-
tion by comparing three initiative models to trigger robot
actions: Human-initiated help, robot-initiated reactive help
and robot-initiated proactive help. Through a user study
(N=18) we demonstrated that people collaborate best with a
proactive robot, yielding better team fluency and high sub-
jective ratings. While they are willing to give control of

Tenth Annual ACM/IEEE International Conference on Human-
Robot Interaction, Proceeding of the Workshop on Cognition:
A Bridge Between Robotics and Interaction. pp. 11. Portland,
USA.

Cakmak M, Chao C and Thomaz A (2010) Designing interactions
for robot active learners. IEEE Transactions on Autonomous
Mental Development 2(2): 108–118.

Carifio J and Perla RJ (2007) Ten common misunderstandings,
misconceptions, persistent myths and urban legends about Lik-
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initiative to a proactive robot, they prefer having control
rather than working with a reactive robot that only helps
when it is needed.

Additional evidences showed that participants gazed to
the robot’s face more often during the human-initiated help
than for the other conditions. We also showed that partic-
ipants almost always gazed to the face of the robot before
asking for help, which can be used as a cue for turn tak-
ing and improve the robot’s reaction time. This may mean
that asking for the robot’s help may lead to a more “social”
interaction, without altering the quality of interaction or the
system performance.
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