
  
 

 
 

確率共鳴に起因しうる自閉スペクトラム症のノイズ幻覚	

謝 至中†   長井 志江‡   浅田 稔† 

†大阪大学工学研究科 〒565-0871 大阪府吹田市山田丘 2-1 
‡情報通信研究機構脳情報通信融合研究センター	 〒565-0871 大阪府吹田市山田丘 2-1 

E-mail:  †{jyhjong.hsieh, asada}@ams.eng.osaka-u.ac.jp,  ‡yukie@nict.go.jp 

あらまし  我らの先行研究で，自閉スペクトラム症当事者が外界には存在しないノイズ幻覚を知覚することが明
らかになった．我らは確率共鳴理論に基づいて計算モデル設計し，モデルを用いてノイズ幻覚の神経メカニズムを

検証する．正常の状況に確率共鳴は入力信号の構造を強調して検知できるようにする機能があるが，調整の異常で

不快なノイズを起こす可能性もある．本研究では，その計算モデルの各パラメータが聴覚の過度な神経反応にどの

ように影響することを検討する． 
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Abstract  Our previous experiments found that some people with ASD suffer from phantom noise in both visual and auditory 

perception. We built a computational model based on stochastic resonance to investigate the underlying neural mechanism of 

phantom noise. Stochastic resonance normally helps people recognize input signals by emphasizing their structure but may 

induce unpleasant noise with atypical modulation. Our current study demonstrates how different parameters of the model affect 

hyper neural responses in auditory perception. 
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1. Introduction 

Autism spectrum disorder (ASD) is a developmental 
disorder characterized by impaired social abilities and 
stereotyped behaviors, but there are also some reports 
suggested that the atypical perceptions might be an 
important cause of the social impairments [1]. Our 
previous studies [2][3] found some people with ASD have 
noise perception in visual modality (visual snow) [2] or 
auditory modality (tinnitus) [3], especially when the 
environmental stimuli (e.g. movement of objects or 
loudness of sound) changes rapidly. This noise perception 
occurs even while there is no similar noise existing in the 
environment, thus we named it as phantom noise.  

In addition to our studies, there are also some other 
reports indicating many autistic people suffer from 
phantom noise. For example, tinnitus was found to be more 

prevalent in population with Asperger ’s syndrome than 
general public [4]. Furthermore, although it’s not from a 
formal scientific report, there are some videos made by 
autistic people to share their sensory experience in the 
internet. Perception similar to visual snow has also been 
mentioned many times in these videos. However, our 
understanding of phantom noise in ASD is still insufficient, 
and the studies trying to investigate the underlying 
mechanism are very rare. On the other hand, tinnitus is a 
symptom that many people have experienced , no matter 
they have ASD or not. Thus many studies about the 
potential mechanism of tinnitus in general population 
already exist [5][6][7], including some studies using 
computational model to verify the hypotheses [8][9]. Even 
though the cause of phantom noise may be different 
between ASD and general population, we still can get 



 
  
 

 

insights from these studies to make a hypothesis of 
mechanism of phantom noise in ASD. 

The goal of this study is to investigate the underlying 
neural mechanism of phantom noise in ASD. Previous 
studies have shown that insufficient information of signal 
caused by hearing loss might induce tinnitus by stochastic 
resonance [8], and people with ASD have deficit in 
predicting abilities [13][14]. In this study we suggest a new 
hypothesis that the impaired information from prediction 
may cause the phantom noise in ASD, and we created a 
computational model based on stochastic resonance to 
verify our hypothesis. The details of our hypothesis are 
introduced in the following sections. 

 
 

2. Key ideas 
2.1. Phantom noise caused by stochastic 

resonance 
A computational model based on stochastic resonance 

(SR) has been used to investigate the mechanism of tinnitus 
caused by hearing loss [8]. The benefit of adopting this 
theory to investigate phantom noise is that stochastic 
resonance is not restricted to auditory perception but 
involves in other modalities [10], whereas some models are 
designed only for tinnitus [9]. Stochastic resonance is a 
phenomenon whereby the detection of weak stimuli can be 
improved by adding a moderate level of noise [10] (Figure 
1). The stochastic resonance works when the relationship 
between the input signal and output response is nonlinear. 
A weak signal itself cannot be detected if the intensity is 
below the threshold, but it may exceed the threshold after 
a noise was added. Only an optimal amount of added noise 
results in the maximization of information transmitted 
from signal to response. Too weak noise is unable to make 
the signal cross over the threshold, while too strong noise 
will mask the information content of signal. 

 

2.2. Atypical prediction ability in ASD 
In the previous study [8], Krauss et al. suggested hearing 

loss will diminish the threshold and further reduce the 
amount of information able to pass the threshold. To 
compensate the lost information of signal, a stronger noise 
will be produced and might become the cause of tinnitus. 
In conclusion, they supposed tinnitus is a side-effect of 
stochastic resonance while the original purpose is to assist 
signal detection. Although the hearing loss is considered as 
a common cause of tinnitus [11][12], the prevalence of  

 
Figure 1: The enhanced detection of weak signal by 
stochastic resonance. 

 
 

hearing loss among autistic people is not higher than 
general population [4], which implies another cause of 
phantom noise might exist in ASD. Our previous studies of 
ASD perception exhibit the high correlation between 
phantom noise and the changing of stimuli [2][3], which 
implies the phantom noise may occur when the 
environment is unpredictable. Other studies also show the 
atypical characteristic of predicting behaviors in ASD 
[13][14]. Based on these evidence, we hypothesize that the 
hyper-prior [13][15][16] is the cause of phantom noise in 
ASD. Hypo-prior theory assumes people with ASD has 
broader prior, therefore the prediction according to prior 
knowledge become less effectual. As a result, the 
information provided by prediction in ASD is not as much 
as the available information in typical development (TD). 
Similar to the mechanism in the case of hearing loss, 
phantom noise might be induced when the stochastic 
resonance tries to compensate the information loss by 
adding stronger noise (Figure 2B).  

 
 

3. Model design: A computational model based 
on stochastic resonance 
We adapt a computational model based on stochastic 

resonance from the study of tinnitus caused by hearing loss 
[8] to create our model. The model originally consists of 
three functional units: sensor, information detector, and 
noise generator, to perform a feedback control of the added 
noise. We assume the information from prediction should 
be also involved to help the recognition of input stimuli, 
so a predictor would be included to deal with the prediction 
function (Figure 2). The sensor receives the  



 
  
 

 

 

Figure 2: The architecture of the computational model 
based on stochastic resonance.  

 
 

input signal and outputs the neural response, then the 
response would be checked by the information detector in 
order to evaluate the information content. The noise 
generator is controlled by the information detector and can 
inject a noise back to the sensor. The noise would be 
summed with the input signal and induce a different 
response. Through a feedback control, this system would 
choose an optimal noise which could maximize the 
information content in the response, where the pattern of 
the signal could be better recognized. 

 

3.1. Sensor 
In the current study we assume the input signal is 

auditory stimuli and adopt the model of auditory nerve (AN) 

firing rate [9] as the responses function of the sensor. 

However, we suppose this model could also be applied to 

other sensory modalities once we modify the response 

function for the target modality. The threshold of sensor 𝐼"	
is set as 0 dB SPL. When the intensity of input stimuli 𝐼 

is below the threshold the response remains on the 

spontaneous firing rate 𝑓$%  = 50 Hz. For 𝐼  > 𝐼" , The 

response function 𝑓(𝐼) is proportional to the normalized 

cumulative distribution function 𝑝)(𝐼′)𝑑𝐼′
)
),

 of the sound 

intensities according to the infomax principle [17]: 

 

𝑓 𝐼 = 	

𝑓$%																																																								for		𝐼 < 	 𝐼"

𝑓$% + 𝑓456 − 𝑓$%
𝑝) 𝐼8 𝑑𝐼8

)
),
1 − 𝑃$%

									for	𝐼	 ≥ 	 𝐼"	
,						(1) 

 

where 𝑃$% = 	 𝑝)(𝐼)𝑑𝐼
),
)=>

 is the probability of occurrence of 

spontaneous firing rate, and 𝑓456 is 250 Hz. 

 

3.2. Information detector 
In order to determine the optimal noise which can 

maximize the information content, a method to quantify the 
information transduction from the input signal to the output 
response is required. Traditional measures like mutual 
information [10][18] or signal-to-noise ratio (SNR) 
[10][19] are frequently used in theoretical approaches to 
investigate the performance of stochastic resonance, but 
these measures demand the knowledge of the input signal, 
which is sometimes unknown for the system. We use 
autocorrelation of the sensor response instead, because its 
calculation doesn’t need the information of input signal 
[8][20]. Autocorrelation is the correlation between a 
sequence of signal and another sequence of the same signal 
with a lag-time. In our model, the information detector 
takes a time window 𝑊  of the preceding signal to 
calculate the autocorrelation. The autocorrelation function 
of a particular lag-time 𝜏 is defined as: 

 

𝐴𝐶 𝜏 = 	

1
𝑊 2 − 𝜏	 (𝑓 𝑡 − 𝜇F)(𝑓 𝑡 + 𝜏 − 𝜇F)G

𝜎FI
,									(2) 

 
where 𝜇F is the mean of AN firing rate 𝑓, and 𝜎FI is the 

standard deviation of 𝑓. By averaging the autocorrelation 
function over all estimated lag-times finally we get the 
mean autocorrelation: 
 

𝐴𝐶 = 	
1

𝑊/2
𝐴𝐶(𝜏)

K/I

LMN
,																																																									(3) 

 
which would be used to represent the information content 
of the output response. 
 



 
  
 

 

3.3. Noise generator 
The noise from noise generator is a white noise with 

constant mean fixed on 0 dB, but the variance could be 
changed to produce a variety levels of noise. The term 
“noise level” in this study actually indicates the variance 
of the noise. This model introduces a feedback-loop to 
control the level of noise. The noise is summed with the 
signal to become the input of sensor. Still only the intensity 
of the input beyond can pass the threshold and be detected, 
so equation (1) can be modified to:  

 

𝑓 𝐼 + 𝑛 𝐴𝐶 = 

	

fQR																																																								for		I + n(AC) < 	 IW

fQR + fXYZ − fQR
𝑝[ I8 dI8

[]^(_`)
[a

1 − PQR
		for	I + n(AC) 	≥ 	 IW	

,					(4) 

 

The noise with the level which can maximizes the mean 
autocorrelation of the response would be chosen by this 
system.  
 

3.4. Predictor 
The predictor is designed to provide the prediction 

according to prior knowledge and the stimuli of different 
modalities. We presume the prediction could refine the 
output response into a more informative state by Bayesian 
inference. The prediction plays the role as a prior 𝑝(𝑅), 
and the AN response before Bayesian inference is the 
observation 𝑝(𝑓) . The posterior, here is the evaluated 
response after Bayesian inference 𝑝(𝑅|𝑓) , could be 
obtained by the calculation based on Bayes’ rule: 

 

𝑝 𝑅 𝑓 = 	
𝑝(𝑓|𝑅)𝑝(𝑅)

𝑝(𝑓)
,																																																							(5) 

 
When the intensity of input is weaker than threshold, the 
information of the signal could not be revealed in the AN 
response. The inference from the prediction should be able 
to refill the lost information. In the case of ASD, hypo-
prior make the prediction become more uncertain and 
unable to contribute enough information to the posterior. 
There are two kinds of sources for the predictor to refer to. 
We plan to first implement the prediction from prior 
knowledge. To simplify the calculation, the prior 
knowledge would be directly provided to the system. The 
pattern of the prior would be set to be close to the signal, 
so it should contain useful information for recognition of 
the signal. At the next step, we would like to further apply 

the idea of multimodal prediction [21][22] into this model.   
 
 

4. Preliminary experiments:  
We executed two preliminary experiments before formal 

examination of our hypothesis. The original purpose is to 
check whether our model could exhibit the basic 
performance of stochastic resonance, and to clarify the 
effects of different parameters of the model. However, we  
found some interesting results that may be able to better 
explain the occurrence of phantom noise than previous 
studs. 

 

4.1. Effect of noise level 
The elementary idea of stochastic resonance is that the 

recognition of a weak signal could be improved by adding 
a moderate level of noise, not too strong or too weak. To 
demonstrate this basic performance of our model, we 
manipulated the range of noise level to be searched by the 
noise generator. If our model works properly, once the 
range covers the optimal noise level, we should always get 
similar results. We simply changed the upper limit of the 
range between 5, 10, and 30 dB and checked the results. 
The input stimulus is a sequence of sine wave signal 
(Figure 3A) while half of it is under the threshold. The time 
window for autocorrelation calculation was set as 30 time 
steps. 

Unfortunately, the results violate our prediction (Figure 
3C, D). Although the pattern of the signal could be 
somehow revealed, especially when the upper limit of noise 
is 10, the noise level grows as the upper limit increases. 
We cannot get the moderate level of noise when the upper 
limit is 30, even though the optimal noise level should be 
already covered in this range. The good thing is that the 
reason to cause this failed performance was found in the 
next experiment. Actually it is because of the setting of 
time window. Another point which should be noticed is that 
the abnormal strong noise (Figure 3C) may be related to 
phantom noise. The details would be explained in the next 
section. 

 
 

4.2. Effect of time window 
Before directly using the predictor to verify our 

hypothesis, here we introduce a simpler way to estimate the 
effect of information content from prior experience. For 
each time point, the information detector takes a length 
(time window) of preceding signal to calculate the  



 
  
 

 

 
Figure 3: The results of preliminary experiment of 
modification on noise range. (A) The input signal. (B) The 
AN response without SR. The signal cannot be detected 
when the intensity is lower than the threshold 0 dB. (C) 
The noise induced by SR. (D) The AN response after 
adding the noise.    

 
 

autocorrelation. We can consider this process as that the 
information detector refers to the recent states of the 
stimuli to predict the current state. A longer time window 
means the system take more information from the 
preceding history into account. In this experiment, we 
manipulated the time window between 100, 200, … , and 
800 time steps and examined the effect. The input stimulus 
is a sine wave signal with the intensity below the threshold 
(Figure 4A). We also want to verify why a moderate noise 
could not be picked out in the previous experiment, so we 
recorded the mean autocorrelation of the response 
corresponding to different levels of noise (Figure 5). For 
each time window we conducted 1000 trials and averaged 
the results to plot Figure 5. 

Figure 4C shows the result that the pattern of signal 

could be well revealed when the time window 𝑊 is longer 
enough, but the abnormal strong noise appears again when 
the time window is too short. The reason of  

 

Figure 4: The results of preliminary experiment of 
modification on time window. (A) The input signal and the 
threshold. (B) The noise induced by SR. (C) The AN 
response after adding the noise. 

 

 

Figure 5: The autocorrelation corresponds to a variety of 

noise level with different time window 𝑊. 
 
 

this result could be found in Figure 5. The results of the 

case while 𝑊  = 800 or 500 shows the typical curve of 
stochastic resonance. There is a peak of autocorrelation 
locating at a moderate noise level, which is also the optimal 



 
  
 

 

noise level resulting in the better recognition of signal. In 
contrast, when time window is only 100, the 
autocorrelation curve exhibits a plateau shape. An optimal 
noise level could not be determined. In this condition, all 
noise levels larger than the start point of the plateau region 
are possible to be chosen by the model. An abnormal strong 
noise like the case in lower panel of Figure 4C may 
probably be triggered. It can also be used to explain the 
unexpected results in preliminary experiment 1, since the 
time window is also too short, which is only 30. Following 
the same idea, increasing the upper limit of the noise range 
only extends the plateau region so that the noise cannot 
stay at a moderate level but is enhanced as the upper limit 
increases. This experiment successfully replicated the 
essential function of stochastic resonance and resolved the 
problem occurred in the previous experiment. The results 
also support the idea that  
the abnormal strong noise, which may be the cause of 
phantom noise, would occur when the information from the 
prior event is impaired. The possible explanation is that the 
information from the input signal is too less and may be 
easily masked by the information from the noise.  

 
 

5. Discussion 
This study confirmed the performance of our model on 

stochastic resonance and demonstrated that the phantom 
noise may occur when the information from prior events is 
insufficient. In the study of tinnitus caused by hearing loss 
[8], Krauss et al. claimed the added noise to compensate 
the lost information may induce tinnitus as a side-effect, 
but they didn’t explain the possible mechanism of how 
would the noise be perceived as tinnitus. The intensity of 
added noise in their study is similar to the one we found 
when time window is longer enough (Figure 4C, upper and 
middle panels). If the stochastic resonance works well, the 
added noise (partially) represents the pattern of signal and 
should be perceived as part of the signal. It is hard to 
imagine the moderate noise would result in an annoying 
perception as tinnitus. In contrast, the abnormal strong 
noise we found in the current study (Figure 4C, lower 
panel) is highly plausible to be the origin of the phantom 
noise. This result provides a new insight of how the noise 
created by stochastic resonance become annoying phantom 
noise. In this case, the phantom noise is not a side-effect 
of stochastic resonance, but it is a consequence when the 
stochastic resonance fails to perform its function. 

The results of preliminary experiments stand with the 

side of our hypothesis that the information deprivation 
from prior experience may cause phantom noise. However, 
there is a big gap between the preliminary experiment and 
our hypothesis since the prediction function was not 
directly accessed in the preliminary experiments. Currently 
we are working on the implement of the prediction function 
into our model and plan to execute the experiment directly 
manipulates the prediction function. We propose to 
introduce the prediction from not only the previous 
knowledge but also the stimuli of other modalities. It is 
possible to create a network by connecting sensory 
modalities through the reference of prediction. The 
interaction between the phantom noise from different 
modalities might be able to explain phenomena like the 
coincidence of visual snow and tinnitus in migraine [23] 
might be able to be explained by this network. 

Our hypothesis includes an assumption that people with 
ASD has the difficulty to employ the information from 
prediction. Even if the information loss from prediction 
could be proved to be a cause of phantom noise, we need 
more concrete evidences to support the argument that 
phantom noise in ASD shares the same cause with our 
model. A potential way to address this issue is to verify 
whether the characteristics (e.g. the frequency of tinnitus) 
of phantom noise in ASD could be replicated in our model. 
The present model adopts a simplified one-channel signal, 
which could be regarded as an auditory signal with one 
frequency channel. A model compatible with a complex, 
realistic, and multi-channel signal input is necessary for 
replicating the phantom noise in ASD. On the other hand, 
the knowledge about the characteristics of phantom noise 
in ASD is still poor. We are also working on an experiment 
to investigate the pattern and environmental cause of 
atypical perception in ASD. We expect the results can 
unveil the characteristics of phantom noise like frequency 
of tinnitus and might further help to verify the hypothesis 
in this study. 

 
 

6. Conclusion 
We proposed a new hypothesis that the impaired 

information from prediction may cause the phantom noise 
in ASD, and we design a computational model based on 
stochastic resonance to verify the hypothesis. Currently the 
prediction function of our model is under working, but by 
the preliminary experiment we still found that insufficient 
information from prior experience might induce phantom 
noise, which indirectly supports our hypothesis. We also 



 
  
 

 

found an abnormal strong noise produced by the model. 
This kind of noise has not been reported in the previous 
study and fit the feature of phantom noise better. Future 
work will be carried on to further demonstrate the effect of 
prediction on phantom noise. 
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