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Abstract. The natural policy gradient (NPG) method is a promising
approach to find a locally optimal policy parameter. The NPG method
has been demonstrated remarkable successes in many fields, including
the large scale applications. On the other hand, the estimation of the
NPG itself requires a enormous amount of samples. Furthermore, incre-
mental estimation of the NPG is computationally unstable. In this work,
we propose a new incremental and stable algorthm for the NPG estima-
tion. The proposed algorithm is based on the idea of implicit temporal
differences, and we call the proposed one implicit incremental natural ac-
tor critic (I2NAC). Theoretical analysis indicates the stability of I2NAC
and the instability of conventional incremental NPG methods. Numer-
ical experiment shows that I2NAC is less sensitive to the value of step
sizes.
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1 Introduction

The natural policy gradient (NPG) method [10] is one of the branches of rein-
forcement learning (RL), which seeks a locally optimal policy by gradient ascent.
By using the natural gradient, the plateaus in the learning can be avoided [1].
The NPG methods have demonstrated remarkale successes in many fields, such
as traffic optimization [17], dialog system [9] and the high dimensional control
tasks including the control of humanoid robots [3, 7, 14, 15, 18].

In this study, we focus on the incremental natural actor critic (INAC) [2,
5, 13, 22]. INAC methods have three advantages: (i) the sample complexity is
O(n), (ii) all the update procedure can be executed by simple stochastic gradient
descent, and (iii) even when the Fisher information matrix (FIM) degenerates,
INAC estimates NPG by implicitly calculating the pseudo inverse of FIM [23].
However, INAC has a serious drawback: it is very difficult to tune the step size,
and the iteration for NPG estimation is very unstable and divergent. There are
many studies in the literature to improve the stabiliity of the iteraion to update
the policy [8, 12, 16] and the state value function [4, 21], but, to the best of our
knowledge, there are very few studies to deal with the stability of NPG iteration.
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The goal of this paper is to reveal the reason why the existing INAC algo-
rithms are unstable, and to propose an incremental and stable algorithm for the
NPG estimation. The proposed method, which we refer to implicit incremental
natural actor critic (I2NAC), is based on the idea of the implicit stochastic gra-
dient descent [24] and the implicit temporal differences [21]. Theoretical analysis
points out the stability of I2NAC and the instability of the existing INAC meth-
ods. It is shown in a classical benchmark test that I2NAC is less sensitive to the
value of step sizes.

2 Background

2.1 Natural Policy Gradient

We assume that the problem is a Markov decision process (MDP). An MDP is
specified by a tuple (S,A,P,R, γ). S is a set of possible states of an environment
and A is a set of possible actions an agent can choose, both of which could be
discrete or continuous. P and R denotes the state transition probability and the
bounded reward function, respectively. γ ∈ [0, 1) is the discount factor. In case
of model-free RL, the agent does not have the knowledge about P and R.

At each discrete time step t ∈ N≥0, the agent observes the current state
st ∈ S and chooses the action at ∈ A. The state of the environment transits to
the next state st+1 according to Pass′ , Pr (st+1 = s′|st = s,at = a), and the
agent receives the reward rt ∈ R according to Ras , E[rt |st = s,at = a]. The
agent’s decision making is characterized by a parameterized stochastic policy
π(a|s;θ) , Pr (at = a|st = s,θ), which is a distribution over actions given the
state and parameter θ ∈ Rn. We assume that π(a|s;θ) is differentiable with
respect to θ for all s and a, and allow a shorthand notation: πθ , π(a|s;θ).
There exists the limiting stationary state distribution dπ(s) independent of the
initial state: dπ(s) = limt→∞ Pr (st = s|s0 = s′, πθ), ∀s′ ∈ S.

For each policy πθ, the state value function V π(s) and the state-action
value function Qπ(s,a) are given by V π(s) = E

π,P
[
∑∞
τ=0 γ

τrt+τ |st = s] and

Qπ(s,a) = E
π,P

[
∑∞
τ=0 γ

τrt+τ |st = s,at = a] , respectively. The purpose of the

agent is to find the (locally) optimal policy parameter θ∗ which maximizes the

average reward: J(θ) , limT→∞
1
T E
π,P

[∑T−1
t=0 rt

]
=
∑
s d

π(s)
∑
a π(a|s;θ)Ras .

Let fw(s,a) be a linear function approximator given by

fw(s,a) , w>ψ(s,a) = w>∇θ lnπ(a|s;θ), (1)

where |w| = |θ| and ψ is the characteristic eligibility. The approximator fw(s,a)
is compatible in the sense that the following equation holds:

∇wfw(s,a) = ∇θ lnπ(a|s;θ) =
∇θπ(a|s;θ)

π(a|s;θ)
. (2)
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Assume that the following equation,

E
θ

[(Qπ(s,a)− b(s)− fw(s,a))∇wfw(s,a)] = 0 (3)

holds, where E
θ

[·] denotes an expectation over the state-action pair under the cur-

rent policy πθ, that is, for an arbitrary variable x, E
θ

[x] ,
∑
s d

π(s)
∑
a π(a|s;θ)x,

and b(s) is a state-dependent arbitrary function, so called baseline. Then the pol-
icy gradient is given as follows [13, 20]:

∇θJ(θ) ' E
θ

[∇θ lnπ(a|s;θ)fw(s,a)] . (4)

Thus, policy gradient can be estimated by approximating Qπ(s,a) projected on
to the subspace spanned by ∇θ lnπ(a|s;θ). The appropriate choise of baseline
b(s) reduces the variance of (4). The good choise of the baseline is the state value
function V π(s). In this sense, fw(s,a) approximates the advantage function,
Aπ(s,a) = Qπ(s,a) − V π(s). Furthermore, substituting Eq. (1) into Eq. (4)
yields

∇θJ(θ) = G(θ)w,

where G(θ) is the Fisher information matrix (FIM) of the policy distribution
weighted by the stationary state distribution:

G(θ) , E
θ

[
∇θ lnπ(a|s;θ)∇θ lnπ(a|s;θ)>

]
.

Thus the natural policy gradient [10] is given by:

∇̃θJ(θ) = G−1(θ)∇θJ(θ) = w. (5)

2.2 Incremental Natural Actor Critic

A number of algorithms have been proposed to estimate w satisfying Eq. (3),
incrementally [2, 5, 13, 22]. In all of these algorithms, which we refer to incremen-
tal natural actor critic (INAC) algorithms, the approximation of the advantage
function is performed in the form of the regression of the temporal difference
(TD) error, δπ, based on the fact that E

π,P
[δπ|s,a] = Aπ(s,a). The update of w

is given by the following form:

wt+1 = wt + α (δt − fw(st,at)) et, (6)

where δt is the approximated TD error and et is the eligibility trace.
For example, in the natural policy gradient utilizing the temporal differences

(NTD) algorithm [13], δt and et are defined as follows, respectively:

δt = rt + γV (st+1)− V (st),

et =

t∑
τ=0

(γλ)t−τψτ ,
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where V is the approximated state value function and λ ∈ [0, 1] is the decay
factor of trace. NTD and other algorithms [2, 5, 22] are different only in the
definition of δt and et.

3 Implicit Incremental Natural Actor Critic

In this section, first we propose an incremental NPG estimation algorithm based
on the ideas of the implicit stochastic gradient descent [24] and the implicit
temporal differences [21]. We start from expanding INAC update:

wt+1 = wt + α
(
δt −w>t ψt

)
et

= wt + α
(
δt −w>t ψt

)
et + β

(
w>t et −w>t et

)
et,

where β ≥ α. Here we introduce the implicit update:

wt+1 = wt + α
(
δt −w>t ψt

)
et + β

(
w>t et −w>t+1et

)
et. (7)

Eq. (7) is implicit in the sense that the parameter after the update,wt+1, appears
on the both sides of equation. Note that the fixed point of Eq. (7) is the same
as the fixed point of (6). It follows that(

I + βete
>
t

)
wt+1 =

(
I + βete

>
t

)
wt + α

(
δt −w>t ψt

)
et.

The matrix I + βete
>
t is positive definite. Finally, using the Sherman-Morrison

formula, we have implicit incremental natural actor critic (I2NAC) algorithm:

wt+1 = wt + α
(
I + βete

>
t

)−1 (
δt −w>t ψt

)
et (8)

= wt + α

(
I − β

1 + β‖et‖2
ete
>
t

)(
δt −w>t ψt

)
et. (9)

The difference of I2NAC from INAC is only the multiplication of the matrix
I − β

1+β‖et‖2 ete
>
t . All the INAC algorithms of the form (6) can be converted

into I2NAC. Note that the complexity of (9) is O(n), because (9) can be solved
only by computing the inner products.

4 Theoretical Result

In this section, we analyze the stability of INAC and I2NAC. Similar analy-
sis is performed in [21]. The updates (6) and (9) can be rewritten as follows,
respectively:

wt+1 =
(
I − αetψ>t

)
wt + αδtet,

wt+1 =
(
I − αEtetψ>t

)
wt + αδtEtet,

where Et , I − β
1+β‖et‖2 ete

>
t . For the simplicity, we assume that the true

state value function is given, thus δt = 0. Let w0 denote the initial estimate
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of the NPG, then the estimate of the NPG at time T ∈ N≥0 obtained by

INAC and I2NAC can be rewritten as wT =
∏T−1
t=0

(
I − αetψ>t

)
w0 and wT =∏T−1

t=0

(
I − αEtetψ>t

)
w0, respectively. Thus the L2 norm of the NPG estimated

by INAC and I2NAC are bounded as follows, respectively:

‖wT ‖2 ≤
T−1∏
t=0

‖I − αetψ>t ‖2‖w0‖2,

‖wT ‖2 ≤
T−1∏
t=0

‖I − αEtetψ>t ‖2‖w0‖2.

If ‖I − αetψ>t ‖2 ≤ 1 for all t, ‖wT ‖2 stays bounded. The same argument holds
for I2NAC. The following theorem gives ‖I − αetψ>t ‖2 and ‖I − αEtetψ>t ‖2.

Theorem 1. ‖I − αetψ>t ‖2 and ‖I − αEtetψ>t ‖2 are given by

‖I − αetψ>t ‖2 = max{1,

√
1 +

α2c2t − 2αdt + αct
√
α2c2t + 4− 4αdt

2
}, (10)

‖I − αEtetψ>t ‖2 = max{1,

√
1 +

α2η2t c
2
t − 2αηtdt + αηtct

√
α2η2t c

2
t + 4− 4αηtdt

2
},

(11)

respectively, where

ηt ,
1

1 + β‖et‖2
, ct , ‖et‖‖ψt‖, dt , e

>
t ψt.

Proof. First we consider INAC. The norm of a real-valued matrix A is the square
root of the maximum eigenvalue of A>A. We have(

I − αetψ>t
)> (

I − αetψ>t
)

= I − αetψ>t − αψte>t + α2ψte
>
t etψ

>
t

= I +ψt
(
α2e>t etψ

>
t − αe>t

)
− αetψ>t

, I +X. (12)

Here we apply the following lemma (Lemma 2 in [21]).

Lemma 1. Let X = x1y
>
1 + x2y

>
2 ∈ Rn×n, then the matrix X has n− 2 eigen-

values equal to 0 and the rest 2 eigenvalues are given by

x>1 y1 + x>2 y2 ±
√

(x>1 y1 − x>2 y2)2 + 4(x>1 y2)(y>1 x2)

2
.

Thus, the matrix X in the righthand side of Eq. (12) has n−2 eigenvalues equal
to 0, and the rest 2 eigenvalues are given by

α2c2t − 2αdt ± αct
√
α2c2t + 4− 4αdt

2
,
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where

ct , ‖et‖‖ψt‖, dt , e
>
t ψt.

Therefore, the matrix in the righthand side of Eq. (12) has n − 2 eigenvalues
equal to 1, and the rest 2 eigenvalues are given by

1 +
α2c2t − 2αdt ± αct

√
α2c2t + 4− 4αdt

2
.

Taking the square root of above gives ‖I − αetψ>t ‖2.
Next we consider I2NAC. Note that Etet = ηtet holds, where ηt , 1

1+β‖et‖2 .

Therefore the same argument above holds for I2NAC by replacing et with ηtet,
and ‖I − αEtetψ>t ‖2 can be obtained by simply replacing α with αηt in ‖I −
αetψ

>
t ‖2. ut

Remark 1. Therorem 1 allows us to compare the stability of I2NAC with INAC.
For the simplicity, by setting λ = 0, we have

‖I − αψtψ>t ‖2 = max{1, |α‖ψt‖2 − 1|} ≥ 1, (13)

‖I − αEtψtψ>t ‖2 = max{1, |αηt‖ψt‖2 − 1|} = max{1, |1− α‖ψt‖2

1 + β‖ψt‖2
|} = 1.

(14)

The last equality in Eq. (14) holds because β ≥ α. Here, we assume that the
policy is Gaussian, N (µ, σ). Then the eligibility is given by ψµ = (a−µ)/σ2 and
ψσ = ((a− µ)2 − σ2)/σ3. In MDP, the optimal policy is deterministic. Thus, if
the learning progresses successfully, σ → 0 and ‖ψ‖ → ∞. Therefore, (13) and
(14) indicate that the iteration by INAC diverges even if the learning successes,
while the iteration by I2NAC stays bounded.

5 Experimental Result

In the next experiment, we evaluate the robustness against the step size tuning.
The pendulum swing up and stabilizing problem is a well known benchmark in
continuous state-action space RL [6, 13]. The state of the environment consists
of an angle q ∈ [−π, π] and an angular velocity q̇ ∈ [−15, 15] of pendulum, that
is, s = (q, q̇)>. The action of the agent is applied as a torque to the pendulum
after scaling, that is, 5a = τ ∈ [−5, 5]. The dynamics of the pendulum is given
by ml2q̈ = −µq̇ + mgl sin(q) + τ , where m = l = 1, g = 9.8 and µ = 0.01,
and numerically integrated with ∆t = 0.02. An episode lasts for 1000 steps
and the initial state in each episode is s0 = (q0, 0)>, where q0 is determined
randomly. The policy parameter is not updated in the first 100 episodes, in
order to avoid using the incomplete estimates of the NPG. The reward function
is R(s) = cos(q) − (q̇/15π)2, and the penalty for over-rotation does not exist.
The policy is a Gaussian distribution:

π(a|s;θ) =
1

σθ(s)
√

2π
exp

(
− (a− µθ(s))2

2σθ(s)2

)
,
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where the mean µθ(s) and the standard deviation σθ(s) are determined by
the output of a three layer fully connected neural network. The input vector is
(cos(q), sin(q), q̇)>, and the hidden layer has 10 sigmoidal units. The output layer
consists of two units: the mean unit has a tanh activation and the standard devia-
tion unit has a sigmoidal activation. A small constant value σ0 = 0.01 is added to
the output of the standard deviation unit, in order to avoid the divergence of ψt.
The state value function is approximated using 7th order Fourier basis [11]. NTD
and I2NAC (based on NTD iteration) are applied. We performed a grid search
such that α, αv ∈ {10−1, 5 · 10−2, . . . , 10−4}, αθ ∈ {10−4, 5 · 10−5, . . . , 10−7},
where αv and αθ are the step sizes for updating the parameters of the state value
function and the policy, respectively. For I2NAC, the values {α, 2α, 10α, 1} were
used for β in the grid search. The discount factor and the decay factor of trace
were set to γ = 0.98 and λ = 0.9.

Figs. (1-5) shows the learning results for all the sets of the step sizes. The
horizontal axes indicate the number of the episodes and the vertical axes indicate
the average reward. For each set of step sizes, the result is averaged over 10 runs.
If the estimate of even one run diverged, then the learning curve for the set is
truncated. Therefore, if the learning diverges in many sets of the step sizes, the
plot will be sparse, otherwise dense. Table 1 is the summary of the results, which
shows the rate of the divergent sets. It was shown that iteration of I2NAC is
much more stable and robust against the tuning of step sizes, compared to INAC.
The rate of the divergent sets of I2NAC was still high, this was mainly because
the parameters for the policy and state value function diverge if αθ and αv are
large. The adaptive step size methods for policy [12, 16] or state value function
[4] would stabilize the learning process, but this issue is outside of the scope of
this work. The larger value of β would stabilize the iteration, while the learning
would be slower. However, the performance of I2NAC was less sensitive to the
value of β.
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Table 1: The rate of the divergent sets.

NTD I2NAC
β n/a α 2α 10α 1
rate 88% 46% 51% 50% 43%
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Fig. 1: NTD
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Fig. 2: I2NAC, β = α
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Fig. 3: I2NAC, β = 2α
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Fig. 4: I2NAC, β = 10α
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Fig. 5: I2NAC, β = 1

6 Conclusion and Outlook

In this work, we proposed incremental estimation algorithm of the NPG based on
the implicit update. Theoretical analysis pointed out the stability of I2NAC and
the instability of the existing INAC methods. It was shown in a classical bench-
mark test that I2NAC is less sensitive to the value of step sizes. The promising
and straightforward future work is to extend I2NAC to the deterministic policy
gradient method [19].
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