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Introduction 
Autism spectrum disorder (ASD) is a developmental 
disorder characterized by impaired social abilities 
and stereotyped behaviors, and the atypical 
perceptions might be an important cause of the 
social impairments [1]. Our previous studies [2][3] 
showed that some people with ASD percieve 
visual/auditory noise which does not exist in the 
environment, especially when the environmental 
stimuli (e.g. movement of objects or loudness of 
sound) change rapidly. 
The aim of this study is to investigate the underlying 
neural mechanism of phantom noise in ASD. Both 
top-down prediction and spontaneous neural 
activities are assumed to play a role in perceiving 
sensory stimuli [4][5]. Based on this idea, we 
hypothesize that in case of individuals with ASD, 
their deficit in referring prior information [6] induces 
hyper spontaneous neural activities, which may 
become the source of phantom noise. Our current 
study verifies the hypothesis by building a 
computational model. 
 
Model design 
We propose a computational model that integrates 
the prediction and spontaneous neural activities into 
the process of perceiving sensory input (Figure 1). 
The model consists of four modules: The sensation 
module first receives an external stimulus. Then the 
modules of prediction and stochastic resonance, 
which is a type of spontaneous neural activity, 
modulate the signal. The resulting signal is finally 
perceived as a meaningful pattern by the perception 
module.  
 
1. Stochastic resonance 
This study adopts stochastic resonance as a 
mechanism of spontaneous neural activities. 
Stochastic resonance is a phenomenon that a 
subthreshold signal can be boosted and better 
recognized by adding a moderate level of noise [5].  
The module of stochastic resonance implements a 
feedback-loop control to determine the optimal level 
of noise which could maximize the information 
content of output response.  

 
Figure 1. The architecture of the computational model. 
 
The information evaluator calculates the information 
content by autocorrelation AC, wich is the correlation 
between a sequence of signal and another sequence 
of the same signal but with a lag-time τ:  
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where W is the time window of the preceding signal, 
𝜇.  is the mean of signal intensity 𝑥 , and 𝜎.3  is the 
standard deviation of 𝑥. By averaging the results of 
autocorrelation with different lag-times, we finally 
obtain the mean autocorrelation: 
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which is used to represent the information content of 
the output response. 
 
2. Predictor 
We designed a prototype of the predictor and tested 
its performance in a simplified situation, where the 
input signal was a sinusoid: 

𝑥	 = 	𝐴．sin 𝑣𝑡 .																															(3) 
The predictor follows the idea of predictive coding, 
which applies Baye’s thereom [4]:  

𝑝 𝑣 𝑢 = 	
𝑝 𝑣 𝑝(𝑢|𝑣)

𝑝(𝑢)
	,																							(4) 

where 𝑢 is the observation of x, to estimate the most 
likely 𝑣  as 𝜙 . Figure 2 shows an example how it 
predicts an input signal with a perceptual threshold. 
The prior knowledge of 𝜙 was set as 1.5. The result 
of estimationproperly converged to the true value as 
2.0. 	



 
Figure 2. The performance of predictor: (a) Input signal (b) 
Estimation of parameter 𝜙 of the signal. 
 
Preliminary experiment 
We conducted a preliminary experiment to verify our 
hypothesis that the deficit in referring prior 
information may cause hyper spontaneous neural 
activity, which results in phantom noise. We 
manipulated the time window ( 𝑊  in Eq. 1) to 
examine its efffect on the level of neural noise 
created by the stochastic resonance module. The 
length of time window indicates how much prior 
information should be referred to in order to 
determine the optimal level of noise that maximizes 
the information content. 

 

 
Figure 3. The results of preliminary experiment: (a) Input 
signal. (b)(c)(d) Added noises with time window 900, 500, 
and 100 respectively. (e)(f)(g) Output responses with time 
window 900, 500, and 100 respectively. 
 
We used a sine wave signal with an intensity below 
the perceptual threshold (Figure 3a) as an input 
stimulus. The results show that the pattern of the 
input stimulus was better revealed in the output 
response (Figure 3e, f) with the moderate levels of 
noise (Figure 3b, c) when W was longer enough (𝑊 

= 900 and 500, respectively). This demonstrates the 
advantage of stochastic resonance. In contrast, 
when the time window was too short (𝑊 = 100), a 
stronger noise (Figure 3d, g) was generated, 
resulting in the difficulty in recognizing the original 
signal.  
The above results could be explained by a 
systematic analysis of autocorrelation shown in 
Figure 4.  The autocorrelation should exhibit a peak 
with a moderate level of noise, like the curves of time 
window 500 and 900, but there is no a such peak in 
the curve of time window 100. This may be caused 
by the insufficient information from the preceding 
signal. 

	
Figure 4. The autocorrelation corresponds to a variety of 
noise level with different time window 𝑊. 
 
Conclusion 
We proposed a computational model to account for 
the phantom noises observed in ASD. Stronger 
neural noise was generated when the time window 
of the preceding signal was too short, which is 
considered as less prior information. The results 
support our hypothesis that the deficit in referring 
prior information may be a cause of phantom noise. 
Future work will be carried on to further demonstrate 
how the atypical function of the predictor influence 
the intensity of neural noise. 
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