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Prediction Error in the PMd As a Criterion
for Biological Motion Discrimination:

A Computational Account
Yuji Kawai, Yukie Nagai, Member, IEEE, and Minoru Asada, Fellow, IEEE

Abstract—Neuroscientific studies suggest that the dorsal
premotor area is activated by biological motions, and is also
related to the prediction errors of observed and self-induced
motions. We hypothesize that biological and nonbiological
motions can be discriminated by such prediction errors. We
therefore propose a model to verify this hypothesis. A neural
network model is constructed that learns to predict the veloc-
ity of the self’s next body movement from that of the present
one and produces a smooth movement. Consequently, a prop-
erty of the input sequence is represented. The trained network
evaluates observed motions based on the prediction errors. If
these errors are small, the movements share a representation
with the self-motor property, and therefore, are regarded as bio-
logical ones. To verify our hypothesis, we examined how the
network represents the biological motions. The results show that
predictive learning, supported by a recurrent structure, helps
to obtain the representation that discriminates between biologi-
cal and nonbiological motions. Moreover, this recurrent neural
network can discriminate the ankle and wrist trajectories of a
walking human as biological motion, regardless of the subject’s
sex, or emotional state.

Index Terms—Biological motion, dorsal premotor area (PMd),
one-third power law, predictive learning, recurrent neural
network.

I. INTRODUCTION

ONE OF the amazing abilities of young infants is that
they can discriminate between biological and nonbi-

ological motions. Many previous studies have shown that
biological motion perception is processed in the occipital and
temporal brain regions (e.g., [1]–[4]). In contrast, it has been
reported that the frontal and parietal cortices also activate dur-
ing the observation of biological motions (e.g., [5] and [6]).
However, the role and mechanism of the activation of the
frontal and parietal areas are not well understood. In this
paper, we propose a computational model for biological
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motion discrimination in the motor-related area suggested by
neuroscientific, developmental, and psychological findings.

We focus on the fact that the dorsal premotor area
(PMd) activates when a biologically moving object is
observed [6]–[8]. Casile et al. [8] used the one-third power
law to define biological motion, where the tangential speed
is proportional to the one-third power of the radius of cur-
vature (i.e., the speed decreases with larger curvature) [9]. A
recent electroencephalographic study also reported that brain
oscillation in the motor-related area is modulated by the obser-
vation of movements following the law [10]. This law can
be observed in many biological motions, e.g., hand move-
ments [9], eye movements [11], and ankle movements during
walking [12], [13]. Thus, it is known as the kinematic invari-
ance of biological motions. Even mentally simulated motor
trajectories, which are assumed to originate in motor planning
within motor-related areas, comply with the law [14]. It has
been shown that such smooth movements are recognized as
biologically natural human movements [15], [16]. Therefore,
we suppose that the PMd may represent the one-third power
law, which enables infants to find biological motions.

Interestingly, this ability may not require visual learning.
Neonates have few visual experiences, but are able to detect
biological motions [17], [18]. These studies proposed that this
ability may be innate. However, we suppose that it is still pos-
sible to acquire this ability through motor experience during
the fetal period. It was observed that fetuses produce smooth
and voluntary reaching actions [19] and neonates’ hand move-
ments obey a one-third power-like law [20]. This implies that
neonates obtain the one-third power law through motor expe-
riences before their visual experiences. The obtained law is
then applied to visual information process in order to perceive
biological motions.

The PMd generally plays an important role in produc-
ing reaching actions: it activates during planning, execution,
imagination, and observation of reaching actions [21], [22].
The following lists are several findings about these
functions.

1) An anatomical connection with the superior parietal lob-
ule (SPL) [23], and an interaction between the PMd
and SPL enables people to accurately perform reaching
actions [24].

2) The reception of the spatial information of a target object
and of an actor’s body from the SPL enables them to
produce a desired trajectory [24].
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3) The PMd reacts to errors in the predicted trajectories
of one’s own limb [25] and those of others’ reach-
ing motions [26], and activates during the prediction
of an object’s motion and even its geometric shape, as
well [27]–[29].

These findings may suggest that prediction errors in self-
induced motions, others’ motions, and object’s motions can
discriminate between biological and nonbiological motions,
even when the observed target is not an agent.

The above suggestion leads to the following hypothesis: a
neural network in the PMd represents biological motion, i.e.,
the one-third power law acquired from one’s own motor expe-
riences without any visual information. Based on the acquired
representation, this network predicts others’ observed move-
ments. It then regards them as biological motions if their
prediction errors are small, i.e., they share the representation
with self-induced movements. To verify this hypothesis and
clarify the requirements for a neural network to represent the
biological law, we constructed a computational model. We
utilize the velocity of an arm movement as an input of the
network because a monkey’s neurons in the PMd represent
the velocities of self-induced arm movements (e.g., [30]). The
one-third power law includes curvature, which is a function
of acceleration. Therefore, the network must store past input
and implicitly represent acceleration information to obtain the
law. Predictive learning may encourage the organization of a
neural network toward such information processing.

In the first experiment, we examine whether learning motor
prediction allows the network to represent the law. Next,
we input point light displays (PLDs) of human walkers to
the network trained using the self-induced movements and
show that the model can discriminate them from nonbiological
motions. This task corresponds to the experiments for neonates
(e.g., [17]). Finally, we attempt to simulate the experiment by
Beets et al. [31] who showed that motor training without vision
improved the visual motion discrepancy (details are given in
the next section). Similar to the training in [31], our model is
trained using three kinds of motions that either do or do not
follow the one-third power law, and then its discrimination
ability is evaluated. The measure is how clearly the hidden
neurons are separated according to the input discrepancy.

This paper is partially based on our previous paper [32]. The
basic idea is almost the same, and some experiment results
overlap. However, in this paper, we analyze the internal rep-
resentation of the learned neural networks in experiment 1
and show that our model is able to explain the experiment by
Beets et al. [31] in experiment 4.

II. RELATED STUDY

There are several modeling and psychological studies
related to biological motion representation. They are based
on visual information processing [33], learning sensorimo-
tor prediction [34]–[37], an RNN model limited to reach-
ing motion [38], and a conceptual model [39], [40]. Our
model outperforms all these models, and further behavioral
evidence [31] supports our model.

Giese and Poggio [33] proposed a computational model for
the recognition of PLDs. This model explains the information
processing in the visual cortex from the primary visual area
to the superior temporal sulcus (STS). Along the visual path,
local motion information, observed through a receptive field-
like mechanism, is integrated into global motion information.
The global information is eventually associated with a gait pat-
tern label, e.g., walking or running, in a supervised manner.
However, this model does not consider nonvisual motor learn-
ing as neonates may perform [17], [18], [41]. Conversely, in
our model, the motor-related area detects biological motions
through motor experiences alone based on motor prediction.

There are many computational and robotic studies
on cognitive models employing sensorimotor prediction
(e.g., [34]–[37]). Most of them first learn associations
between visual and motor (or proprioceptive) information
during self-induced movements. The learned associations
are then applied to visual information during the observa-
tion of another person’s movement and predict its motor
information or future visual information. This mechanism
enables the models to predict the actor’s goal or motor
intention [34], [35]. Furthermore, the model can discrimi-
nate between self-other movements based on the prediction:
movements with small prediction errors are evaluated as self-
induced movements [36]. Schrodt et al. [37] utilized the visuo-
motor associations for biological motion perception. Their
model recognized observed actions as self-induced motor
patterns and anticipated their future motions. These models
require associative learning with vision, while our model does
not need vision because it focuses on the universally observed
kinematic law of human movements.

Sawaragi and Kudoh [38] reported that predictive learning
for reaching actions enables an artificial neural network to rep-
resent the actions. A recurrent neural network (RNN) was fed
with the time-series positions of a hand and arm during reach-
ing actions and trained to predict the one-ahead positions from
the current positions. Consequently, the hidden neurons in the
RNN represented angles of the arm and horizontal positions of
the hand. However, the position data were limited to a reaching
context, and therefore the representations were specific only
for reaching movements. Our aim is to represent more general
biological motions, i.e., the one-third power law, regardless
of the modalities (motor or vision). Further, our model com-
plies with the neuroscientific evidence for motor prediction
and error detection in the PMd, while the previous model did
not consider them.

The key idea that neonates may have biological motion rep-
resentation is similar to the active intermodal mapping (AIM)
model proposed by Meltzoff and Moore [39], [40]. In addi-
tion to the above-mentioned neonates’ ability to discriminate
biological motions, it is reported that they can imitate oth-
ers’ facial expressions [39]. The AIM model implies that the
neonatal imitation requires visuomotor representation for facial
movements: motor (proprioceptive) information of their own
face and visual information of another’s face are integrated
into the visuomotor representation, and the neonates obtain
the correspondence between them by extracting their com-
mon representation. Although the AIM model is similar to
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our model in terms of use of the visuomotor representation,
this model is conceptual, and therefore, has not been imple-
mented as a computational learning process. In contrast, we
propose a computational model and aim to propose a neural
basis for a learning process to acquire this representation.

There is further evidence to support the biological motion
representation learned through nonvisual motor experiences.
Beets et al. [31] showed that motor training improves the
performance of visual discrimination for learned movements.
Blindfolded adult subjects were trained to make hand move-
ments that violated the one-third power law. After the motor
training, they answered questions about whether two con-
secutive visual stimuli were the same. The stimuli were
movements of a dot following different velocity profiles that
violated the one-third power law. Performance of the task was
improved depending on the success of the motor training. This
result suggests that the motor representation acquired through
motor experiences can be applied to the visual discrimination
ability. This visuomotor representation may be extended to
movements that violate the biological law as well.

III. MODEL FOR BIOLOGICAL

MOTION DISCRIMINATION

The structure of the proposed model is shown in Fig. 1. The
red box encloses a neural network used to represent biological
motion. This network corresponds to the PMd. The blue box
corresponds to the SPL/visual areas for coding visual inputs.
This model is first trained with desired trajectories to pro-
duce smooth hand movements. The motor input consists of
time-series velocities, and the neural network learns to output
the next input, shown as solid arrows in Fig. 1. This motor-
based learning is expected to enable the network to represent
self-induced biological motions, i.e., the one-third power law.
After the motor experience, the neural network is given visual
information from the SPL and estimates its prediction error,
shown as broken arrows in Fig. 1. If the errors are small,
i.e., if the observed motions share the representation with
self-induced motions, the model regards them as biological
motions; otherwise, it regards them as nonbiological ones.

It is assumed that the planning of human-like smooth tra-
jectories is modeled by minimizing the jerk, i.e., the derivative
of acceleration [42]. Note that the minimum-jerk trajecto-
ries obey the one-third power law [43], but the law does not
always satisfy minimum jerk. Fig. 2 shows an example of the
minimum-jerk trajectory. As we can see, it exhibits a biolog-
ical velocity profile such that the speed is slower when the
curvature is greater, i.e., around points B and C.

The input signals to the neural network are time-series
velocities of the minimum-jerk trajectories. At time t, a veloc-
ity [direction θ(t) [rad], and magnitude v(t)] is transformed
into the activations of eight neurons that have direction selec-
tivity at intervals of π/4 radians. Thus, the population-coded
velocity is given as

Vm(t) = [v1(t)v2(t) · · · v8(t)]

vi(t) = v(t) exp

(
−
(
θ(t) − π

4 i
)2

2σ 2

)
(i = 1, . . . , 8) (1)

Fig. 1. Model for biological motion detection in the PMd. The neural network
is trained to predict the velocity at the next time (solid arrows in the red box)
and is expected to represent biological motion. Visual information is then
fed into the learned network, which uses prediction error to evaluate how
biological this information is (the broken arrows).

where σ is a constant. Velocity Vm(t) is fed into the neural
network that learns to minimize the error between its output
Ṽm(t) and subsequent input Vm(t+1). This predictive learning
should allow the model to represent a property in the inputs.

After the predictive learning, the network evaluates whether
the observed motions are biological or not. The time-series
velocities of an observed object are coded in the same man-
ner as motor information [i.e., as Vv(t)], which are inputs of
the network. The model estimates prediction errors by com-
paring output Ṽv(t) with subsequent input Vv(t + 1), that is,
Error = (Vv(t + 1) − Ṽv(t))2. If the observed motions share
the representation of self-induced movements, the prediction
errors are small. Therefore, the model judges the observed
motions that have small errors to be biological motions.

The neural network that we used as a predictor is a five-layer
sandglass-type network [44], in which the number of neurons
in the middle layer is less than those in the outer layers (the
center of the red box in Fig. 1). The lower dimensionality on
the path to the output layer enables the neurons to acquire
more compact representation of the input data [45], [46].
Further, this compact representation often avoids over-fitting
and improves the network’s generalization. We add a recurrent
structure, an RNN, to the network to store the past input infor-
mation. The neural activations of the fourth layer are returned
to the second layer through the context layer. This additional
layer allows the network to consider the past and current
velocities to yield acceleration-like information. This may be
useful for representing the one-third power law because it is
a function of acceleration, and the effect of this structure is
investigated in the experiments. The output function of the
neurons in the first, third, and fifth layers is linear, i.e., y = λu,
while the function of the neurons in the second, fourth, and
context layers is sigmoid, i.e., y = [1/(1 + exp(−λu))], where



240 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 10, NO. 2, JUNE 2018

(a)

(b)

(c)

Fig. 2. Example of trajectories given initial and terminal conditions.
(a) Positions of a minimum-jerk trajectory in intervals of 0.05 s. This tra-
jectory is generated from the initial condition [position x = (−3, 5) cm,
velocity v = (18, 22) cm/s and acceleration a = (210,−170) cm/s2 at time
t = 0.0 s], the via condition [x = (−1, −1) cm and v = (−18, −18) cm/s
at t = 0.8 s], and the terminal condition [x = (5, −4) cm, v = (20, 6) cm/s
and a = (−60, 200) cm/s2 at t = 2.0 s]. (b) Tangential speed. (c) Magnitude
of acceleration of minimum-jerk (black), one-third power law (red), and con-
stant tangential speed (blue) trajectories. The paths of these trajectories are
the same, but their velocity and acceleration profiles are different. A–D in
plots (b) and (c) corresponds to point A–D in plot (a).

y and u indicate the output and activity of a neuron, respec-
tively. This activity is given as a summation of the products
of the connection weights and output from the previous layer.
The connection weights between the fourth and context layers
and the self-recursive weights in the context layer remain con-
stant throughout the learning, whereas the others are learned
by standard back-propagation. This type of RNN was also

employed by the above-mentioned previous model to repre-
sent reaching action [38]. In addition, many other models of
the motor areas assume a recurrent structure to deal with time-
series motor and sensor information (e.g., [37], [47], and [48]).
Therefore, the RNN seems to be a reasonable model for
learning and controlling motor behaviors in the motor area.

We employ the population-coded velocity as both the
motor and visual inputs in accordance with neurophysiologi-
cal studies. It is known that monkey’s neurons with direction
selectivity in the PMd code the velocities of hand move-
ments [30], [49]. Further, a population coding method similar
to ours (1) can decode a monkey’s neural activities in the
PMd during their hand movements. Consequently, smooth
movements obeying the one-third power law can be success-
fully reconstructed using the population coding [50], [51].
Neurons in the middle temporal (MT) area represent the veloc-
ity of an observed object in a population-coding manner [52].
Therefore, population coding is a general method for repre-
senting movements, regardless of modality.

IV. EXPERIMENTAL PROCEDURE

A. Experiment 1: Acquisition of Motor Representation

In the first experiment, we investigated how a neural
network represents biological motion through self-induced
motor experiences. The neural network was first trained with
five minimum-jerk trajectories [42] as desired movements.
Next, ten unlearned minimum-jerk trajectories were fed into
the trained network, which corresponds to the observation of
biological motion. We additionally tested other types of trajec-
tories (according to the one-third power law, but not minimum
jerk1 or constant tangential speed) for comparison. In fact,
the output errors of the unknown minimum-jerk trajectories
would be smaller than those of the constant-speed inputs if the
network successfully learned the minimum-jerk criterion. Note
that the errors of the nonminimum-jerk trajectories that obey
the one-third power law were also expected to be smaller. That
is, owing to the general property of neural networks (inter-
polation and extrapolation), the representation acquired from
the minimum-jerk trajectories may be able to cope with the
one-third power law trajectories, suggesting that it could be a
biological motion representation.

To verify our model, we designed comparative experi-
ments with two types of learning targets and two types
of network structures (i.e., four experimental conditions).
Regarding the learning targets, a neural network learned to
minimize prediction errors [i.e., error = (Ṽ(t)−V(t +1))2] or
the output errors of auto-association (identity mappings) [i.e.,
error = (Ṽ(t) − V(t))2]. This comparison suggests the impor-
tance of motor prediction in the PMd. Concerning the network
structures, we compared the results of networks with and with-
out a recurrent structure, i.e., an RNN and a feedforward
network (FNN), respectively.

The inputs for the motor-related learning were limb move-
ments given by a minimum-jerk model in the 2-D space [42].
The positions, velocities, and accelerations on the initial, via,

1Although the minimum jerk is a subset of the one-third power low, we
refer to the one-third power low as it excluding the minimum jerk hereafter.
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TABLE I
PARAMETERS OF THE RNN AND ITS LEARNING

and terminal points were given in a random manner. All
movement durations were 2.0 s, and the sampling rate was
20 Hz (0.05 s intervals). At every sampling time, the velocity
of the trajectory was coded as a neural population (1). The
8-D vectors were normalized from 0 to 1 and were then fed
into the network.

Unknown minimum-jerk trajectories were used to test the
trained network. We generated them the same way as for the
motor-based learning. The one-third power law and constant-
speed trajectories were generated while the paths of the
trajectories and duration time were the same as those of the
minimum-jerk trajectories. Fig. 2(b) and (c), respectively, and
magnitude of the acceleration of the minimum-jerk trajec-
tory (the black line), one-third pow show the tangential speed
er law trajectory (the red line), and constant-speed trajectory
(the blue line). As we designed, the paths of their trajecto-
ries were exactly the same as the one shown in Fig. 2(a),
regardless of the time stamp of each small circle. Fig. 2(b)
shows that the minimum-jerk and one-third power law tra-
jectories had a similar velocity profile that slowed at the
curves (around B and C). However, the acceleration of the
minimum-jerk trajectory is very smooth, while that of the one-
third power law trajectory is not [see Fig. 2(c)]. Therefore,
to represent biological motions from the minimum-jerk tra-
jectories, the network should avoid over-fitting such smooth
acceleration.

The parameters of the RNN are summarized in Table I.
These parameter settings were used in all experiments. We
evaluated each trajectory based on its average squared error.

B. Experiment 2: Learning From Acceleration and Velocity

In the above experiment, we employed the velocities of limb
movements as the network input based on neurophysiological
research (e.g., [30] and [49]). The velocity alone at one instant
in time is insufficient to compute the curvature, which requires
the acceleration. Recall that the one-third power law represents
the relationship between the curvature and speed. Therefore,
we supposed that predictive learning supported by a recurrent
structure needs to internally represent the acceleration required
for the one-third power law. However, explicitly giving the
acceleration to the network seems to facilitate acquisition of
the law even without predictive learning. Here, we gave the
accelerations as well as the velocities of the minimum-jerk
trajectories to the network in the learning and observation
phases.

Fig. 3. Body part trajectories of a man walking in a neutral emotional state,
reproduced from our previous study [32]. (a) Elbow. (b) Wrist. (c) Knee.
(d) Ankle.

The accelerations were computed by subtracting the con-
secutive velocities

ax = (vx(t) − vx(t − 1))/0.05. (2)
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They were coded similarly to the velocities. The input vectors
had 16-D (eight for the velocity and eight for the accelera-
tion), and the number of the output neurons was also 16. The
network learned prediction or auto-association of the inputs
(both accelerations and velocities). The other conditions were
the same as those of the first experiment.

C. Experiment 3: Recognition of Human Walking PLDs

We examined whether the network trained with the
minimum-jerk trajectories in the first experiment could detect
real biological motion. We used the PLDs of 28 walkers
(14 men and 14 women aged from 17 to 28 years; the mean age
is 22.5 years) from a database of 3-D PLDs [53]. Each walker
has one of four emotional states: neutral, angry, happy, or sad.
Each point on a body was normalized to fix the waist and was
projected on a 2-D space as viewed from the side of the walker,
which is like the presentation of a general stimulus in psycho-
logical experiments. We only used four points on the elbow,
wrist, knee, and ankle because of their large displacements.
The sampling frequency, normalization, and population coding
method were the same as those in experiment 1. Fig. 3 shows
an example trajectory of each body part of a male walker in
a neutral emotional state.

D. Experiment 4: Discrimination of Input Patterns

In the final experiment, we aimed to confirm the result by
Beets et al. [31]. This result indicated that the motor learning
of hand movements that do not satisfy the one-third power
law can improve the discrimination performance of observed
movements that have the same successfully learned velocity
patterns. We defined the discrimination performance to be the
degree of classification of the neural activations in the com-
pressive layer, i.e., the third layer. A network was trained
using three kinds of trajectory patterns: minimum jerk, con-
stant speed, and a minus one-third power law. The first pattern
satisfies the one-third power law, but the others do not. Note
that trajectories obeying the minus one-third power law exhibit
a kinematic property opposite to those of the one-third power
law: the speed increases with larger curvature. Five trajecto-
ries for each velocity pattern were used. Unknown trajectories
with the same velocity patterns were then fed into the learned
network. The activities of the neurons in the compressive layer
were analyzed to determine if they could discriminate between
the three velocity patterns.

We used a class separation index J to evaluate the degree
of discrimination

J = tr
(
�−1

W �B

)
(3)

where tr(A) indicates the diagonal sum of a matrix A. Here,
�W and �B are intraclass and interclass covariance matrices,
respectively, given as

�W = 1

n

c∑
i=1

⎡
⎣∑

x∈Xi

(x − mi)(x − mi)
�
⎤
⎦ (4)

�B = 1

n

c∑
i=1

ni(mi − m)(mi − m)� (5)

where c denotes the number of classes, and Xi and ni indi-
cate the data set and size of class i, respectively. Here, mi

and m indicate the mean vectors of Xi and the overall data,
respectively. In this case, the number of classes c was set to
three, i.e., minimum-jerk, constant-speed, and minus one-third
power law.

For comparison, we also evaluated two networks that
learned from either the minimum-jerk trajectories only (one
pattern) or the minimum-jerk and constant-speed trajectories
(two patterns). These networks trained with only one or two
patterns correspond to subjects who failed at motor learning.
Again, five trajectories of each velocity pattern were used
in each case. In the evaluation, both networks were fed the
trajectories of all three velocity patterns.

V. EXPERIMENTAL RESULTS

A. Experiment 1: Acquisition of Motor Representation

Fig. 4 shows the mean error in each network condition.
The left and right bars denote the results of the RNNs and
FNNs, respectively. The black, gray, and white bars denote the
errors for the trajectories complying with minimum jerk, one-
third power law, and constant speed, respectively. One-way
ANOVAs (error × test pattern: minimum jerk, one-third power
law, and constant speed) indicate significant main effects of the
test patterns when the RNN learned prediction (p < 0.01) and
when the RNN (p < 0.05) or FNN (p < 0.01) learned auto-
association. Post hoc tests (Bonferroni) for predictive learning
using the RNN [left bars in Fig. 4(a)] revealed that there are
no significant differences between the errors for the minimum-
jerk trajectories and the errors for the one-third power law
trajectories (p = 0.90). It was also shown that the errors for the
minimum-jerk or one-third power law trajectories are signifi-
cantly smaller than the constant speed errors (either p < 0.01).
Therefore, the acquired representation of this RNN includes
the one-third power law, which enabled the model to distin-
guish the biological-like trajectories from those with constant
speed.

In contrast, the output errors of the neural networks that
learned auto-association could not be a biological criterion
because the errors for the minimum-jerk trajectories were the
largest [see Fig. 4(b)]. This was caused by the difference
of the absolute amplitudes of the test patterns: the maxi-
mum input for the minimum-jerk, one-third power law, and
constant-speed conditions were 0.81, 0.54, and 0.48, respec-
tively. The models only acquired the auto-association, so the
errors were more sensitive to the input magnitude than the
trajectory smoothness.

Fig. 5 shows a distribution of the prediction error when
an unlearned constant-speed trajectory was given to an RNN
trained with minimum-jerk trajectories. The points are the
positions of the inputs, and color indicates the value of
the squared error at that time point. This clearly shows that
the errors at larger curvatures are larger.

We analyzed the acquired representation of the neurons in
the fourth layer with respect to acceleration which was com-
puted by (2). Note that the acceleration information was not
used for learning but computed only for the analysis in order to
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(a)

(b)

Fig. 4. Mean squared errors of the networks after learning (a) prediction or
(b) auto-association of the desired trajectories. The black, gray, and white bars
denote the errors for the minimum-jerk, one-third power law, and constant-
speed trajectories, respectively. The left and right bars denote the errors output
from the RNNs and FNNs, respectively. Stars indicate a significant difference
with the solid line (**: p < 0.01, n.s.: p > 0.05). Error bars denote the
standard error of the mean.

examine whether the network internally acquired the informa-
tion through learning. Fig. 6 shows the correlation coefficients
between activations of the neurons (rows) and population-
coded acceleration of the inputs (columns) when the learned
minimum-jerk trajectories are fed into the trained network.
The figures indicate that these neurons acquired selectivity for
a particular direction of acceleration. The correlation when an
RNN learned motor prediction [Fig. 6 (a)] is clearer than for
those in other conditions [Fig. 6(b), (c), and (d)]. The correla-
tion was not very strong (the maximum coefficient was 0.34),
suggesting that the modest representation of the acceleration
allowed the model to represent not only the minimum-jerk
property but also the one-third power law.

B. Experiment 2: Learning From Acceleration and Velocity

Fig. 7 shows the prediction errors estimated by the RNN
(left bars) or the FNN (right bars). Both networks were trained

Fig. 5. Squared error distribution when an unknown trajectory with constant
speed is fed to an RNN trained to predict minimum-jerk trajectories. The
color of the points at regular time intervals denotes the magnitudes of the
prediction error.

(a) (b)

(c) (d)

Fig. 6. Correlation coefficients for fourth-layer neuron activations (rows)
and input minimum-jerk trajectory acceleration (columns). The acceleration
was coded as a neural population with direction selectivity. The networks of
(a) and (b) had a recurrent structure while the networks of (c) and (d) were
feedforward types. In (a) and (c), the networks learned motor prediction, but
the networks in (b) and (d) learned auto-association.

using the velocities and accelerations of the minimum-jerk
trajectories. The overall errors were much lower than those
in the former experiment, which used only velocities. There
were also significant differences between conditions. One-way
ANOVAs indicated significant main effects of the test patterns
under both network structures (either p < 0.01). Post hoc
tests (Bonferroni) revealed significant differences between the
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Fig. 7. Mean squared prediction errors for the RNNs (left bars) and FNNs
(right bars) trained using the velocities and accelerations of the minimum-jerk
trajectories. Stars indicate a significant difference (**: p < 0.01). Error bars
denote the standard error of the mean.

minimum-jerk and one-third power law trajectories, as well
as between the one-third power law and constant-speed tra-
jectories, regardless of network structure (both p < 0.01).
Therefore, acceleration, as input, enabled the model to predict
the minimum-jerk trajectories more accurately, even if the
network did not have a recurrent structure. However, these
networks over-fitted to the minimum-jerk trajectories, i.e.,
acceleration sequences with small change. Therefore, they did
not generalize their internal representations to the one-third
power law which does not have such smooth acceleration.

C. Experiment 3: Recognition of Human Walking PLDs

Fig. 8 shows the prediction errors for four body trajectories,
averaged over individuals, that were produced by the RNN
trained to predict minimum-jerk trajectories. The learning con-
ditions were exactly the same as those in the first experiment
[the basic results have already been shown as black bars in
Figs. 4(a) and 6(a)]. We employed this network because it
successfully represented biological motion (i.e., not only the
minimum jerk but also the one-third power law). The colors
of the bars in Fig. 8 represent the walkers’ emotional states:
white, red, yellow, and blue denote neutral, angry, happy, and
sad, respectively. The stars on the top of the bars show the
significant differences with respect to the mean prediction
error for the constant-speed trajectories shown in the first
experiment (broken line). The solid line denotes the mean
prediction error for the one-third power law trajectories. All
averaged errors for the trajectories of the wrist and ankle were
significantly lower than the ones for the constant-speed trajec-
tories (broken line) (all p < 0.01), and some of them did
not significantly differ from the one-third power law trajec-
tories. Therefore, the model could judge them as biological
motions that were similar to the one-third power law trajec-
tories. Our model did not recognize the trajectories of the
elbow and knee as biological motion because these trajecto-
ries did not follow the one-third power law, i.e., they changed
their velocities during motions with very small curvatures
[see Fig. 3(a) and (c)]. A 4 (emotional state: neutral, angry,
happy, sad) × 4 (body part: elbow, wrist, knee, ankle) × 2

Fig. 8. Mean squared prediction errors for the trajectories of four body
parts (elbow, wrist, knee, and ankle) produced by the RNN, which learned
to predict minimum-jerk trajectories in experiment 1. The bar colors denote
the emotional state of the walkers. The solid and broken lines show the mean
errors for the one-third power law and constant-speed trajectories, respectively.
Stars indicate a significant difference from the broken line (*: p < 0.05,
**: p < 0.01). Error bars denote the standard error of the mean.

(sex: male, female) × 28 (individual) mixed ANOVA revealed
significant main effects for body parts (p < 0.01) and indi-
viduals (p < 0.05). Therefore, the model’s performance was
insensitive to walkers’ emotional states or sex, although it may
detect individual differences.

D. Experiment 4: Discrimination of Input Patterns

Fig. 9 shows the class separation index (3) of the activation
of the third-layer neurons given trajectories in three classes
of patterns (i.e., the minimum-jerk, constant speed, and minus
one-third power law). Before the separation test, the networks
learned the minimum-jerk trajectories only (left four bars),
the minimum-jerk and constant-speed trajectories (middle four
bars), or the minimum-jerk, constant-speed, and minus one-
third power law trajectories (right four bars). The black, white,
gray, and hatched bars, respectively, indicate the separation
values in the cases of the RNN (prediction), FNN (prediction),
RNN (auto-association), and FNN (auto-association). Clearly,
the index is highest only when the RNN learned to predict all
patterns.

VI. DISCUSSION

A. Predictive Learning in the PMd

This paper presented a PMd model that discriminates bio-
logical motions based on prediction errors. These errors were
estimated by a neural network that represented self-induced
limb movements, i.e., the one-third power law. The result of
the first experiment proved the importance of a recurrent neural
circuit to support predictive learning (see Fig. 4). The network
internally yielded acceleration-like information (see Fig. 6) to
predict the next input, resulting in a representation of a law
that involves an acceleration function. Thus, the model could
predict unknown trajectories according to the one-third power
law, even when it was trained with minimum-jerk trajectories.
There is a derivative gap between acceleration (the one-third
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Fig. 9. Degree of separation between the classes of the velocity patterns
in the neural activations in the third layer. The three bottom labels indicate
the learning patterns fed to the network. The colors of the bars indicate the
network conditions.

power law) and jerk (minimum-jerk law). The RNN implic-
itly represented the acceleration and jerk of the velocity inputs,
and therefore, it had tolerance for the underlying laws. Thus,
the representation overcame the derivative gap and extended
to real biological movements (PLDs), as shown in Fig. 8.

We employed the minimum-jerk rule to generate body
movements and assumed that the PMd represent the one-third
power law. Some studies have asserted that the law emerges
from the constraints of a body’s musculoskeletal system
rather than a constraint of the motor planning [54]–[56].
Gribble and Ostry [54] found that the viscoelasticity of mus-
cles enables the effector’s trajectories to satisfy the one-third
power law even when the motor commands linearly change.
To model a brain-body interaction from which the one-third
power law emerges is an interesting future issue.

The second experiment demonstrated that a velocity was a
sufficient input to represent biological motion. This assump-
tion regarding the input is based on the neurophysiological
findings [30], [52]. Intuitively, using accelerations as the input
facilitates the acquisition of the one-third power law because
it needs accelerations. However, our simulation showed that
the acceleration inputs caused over-fitting to the minimum-
jerk trajectories and prevented the network from generalizing
to the one-third power law trajectories (see Fig. 7). This
result again suggests the importance of an internal produc-
tion of acceleration-like information by predictive learning.
To our knowledge, the neural populations that explicitly code
the accelerations of desired trajectories in the PMd have not
been found. This may be a reason that neurons in this region
improve their generalization capacity for predictive functions.

These results, which show that prediction is useful for bio-
logical motion detection, are consistent with neuroscientific
studies on the PMd. This area was reported to activate dur-
ing the prediction of an observed motion [27]–[29]. The PMd
also treats the execution and imagination of self-induced limb
movements as well as others’ movements [22], [26], [28].
These studies imply that prediction, regardless of modality, is

based on the representation of self-induced limb movements.
Our model study can bridge the predictive nature of the PMd
with the ability to detect biological motion (e.g., [8] and [15]).

This idea is supported by an fMRI study suggesting that
prediction errors may lead to the uncanny valley (subjective
strangeness or unfamiliarity) [57], [58] of an android [59].
They found more activation in the intraparietal sulcus, which
is interconnected with the premotor area, when the subjects
observed an android than a human or a mechanical robot.
This android had a biological appearance but mechanically
moved. The discrepancy between the appearance and move-
ments causes the observer to generate prediction errors for
its movements, leading to an uncanny impression. This seems
consistent with our hypothesis that we perceive movements
with large prediction errors as nonbiological movements.

In our model, the predictive learning from motor informa-
tion alone can achieve the ability to discriminate biological
motions. The conventional theory known as predictive coding
has stated that predicting sensory information is a main func-
tion of the brain (e.g., [60] and [61]). A recent study reported
that even a six-month-old infant’s brain reacts to prediction
errors between audiovisual associations [62]. A computational
study proposed that sensorimotor predictive learning is a fun-
damental mechanism of cognitive development, e.g., imitation
and helping behaviors [63]. In contrast to these theories, we
emphasize the importance of the predictive learning based on
self-induced motor information.

B. Hierarchy of Biological Motion Perception

In the third experiment, the model successfully judged the
wrist and ankle trajectories of the PLD as biological motions
(see Fig. 8). This result corresponds to a psychological study
in which observers can recognize the trajectories of a walkers’
body parts as biological [64]. Note that the performance of our
model did not depend on the walkers’ sex and emotional state.
The model was able to robustly evaluate the PLD as biological
motions despite differences based on sex and emotional state.

A number of studies have indicated that adults can recog-
nize some properties of PLDs, e.g., the sex [65] and emotional
state [66] of a walker. Our result implies that the model dif-
fers from a system for the identification of these properties.
Troje [67] proposed a hierarchical model for the recognition of
biological motion based on a number of psychological exper-
iments. It mainly consists of two layers: 1) a higher system
for the pattern recognition of action type, sex, and emotional
state from global motion information and 2) a lower system
for biological motion detection from a local trajectory. Our
model corresponds to the lower system in this model, partially
supporting Troje’s hypothesis.

However, our ANOVA analysis clarified that our model had
significant sensitivity to the individual differences of walkers
(see Section V-C). This is because it was sensitive to tra-
jectory jerk and some subjects exhibited jumping-like gaits.
In addition, the model was not able to recognize the move-
ments of an elbow and knee as biological motion because they
did not comply with the one-third power law (see Fig. 8).
These trajectories are intricately constrained by connected
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body parts and gravity. This is an example that shows that
not all human movements satisfy the law because they are
influenced by a body and the environment [56]. A psycholog-
ical study is expected to investigate how an observer perceives
the trajectory of such gaits and trajectories.

C. Improvement of Classification by Motor-Based Learning

The final experiment showed that motor-based learning from
trajectories with three velocity patterns (the minimum jerk,
constant speed, and minus one-third power law) improved
discrimination performance between the patterns in the com-
pressive layer (see Fig. 9). This was achieved only when
an RNN learned motor prediction. The network classified
the given trajectories into patterns in the compressive layer
and switched the subsequent prediction strategy. The clas-
sification for prediction may be applied to discrimination
of the visual stimuli. This computation could explain the
experimental result reported by Beets et al. [31].

In our model, even given trajectories that followed the minus
one-third power law, the prediction errors were small, indicat-
ing that they are similar motions as self-induced ones. It is
reasonable, for example, that an athlete who is able to exe-
cute special movements recognizes the same movements, when
he/she observes them, as natural or biological motion.

D. Neonates’ Ability to Detect Biological Motion

While neonates’ ability to detect biological motions has
been regarded as innate [17], [18], [41], our model proposes
that it can be acquired by motor experiences. This devel-
opmental view is supported by a report that the atypical
kinematics profiles (e.g., greater jerkiness) of arm movements
of subjects with autism spectrum disorder correlate with their
low sensitivity to minimum-jerk trajectories [68]. This model
can provide a computational basis for these developmental
phenomena.

However, a previous study showed that neonates are able to
distinguish standard PLDs from scrambled ones, i.e., ones in
which each dot is initially positioned in a random manner [18].
This cannot be explained by our model because of its lack of a
global perspective. It is expected that learning from the move-
ments of an elbow and a shoulder as well as the movements of
a hand allows the model to represent the link structure of the
arm and detect a link structure of biological motion. In addi-
tion, neonates prefer upright biological motions to inverted
ones [17], [18], but the model cannot explain this inversion
effect because of a lack of gravity perception. Neonates, in
contrast, have a nearly mature vestibular system that senses
gravity [69]. Desired trajectories generate smooth trajectories
that are optimized in an environment with gravity, which may
enable the model to exhibit this effect.

In addition to biological motion detection, neonates are
also reported to exhibit preference for face-like visual stim-
uli (e.g., [70] and [71]). There are computational models to
explain this preference: the integration between the proprio-
ceptive information of an arm and tactile information of the
hand and face during facial double-touch allows them to con-
struct their own facial patterns [72], [73]. Based on these

models, the body representations acquired through motor expe-
riences during the fetal period may shape postnatal capabilities
to visually find biological motions and face-like patterns.

E. Mirror Property and Correspondence Problem

Our model can explain an ability to detect biological motion
using a mirror property in the PMd. Mirror neurons discharge
during both the execution of an action and the observation of
another person performing the same action [74], which are
typically observed in the ventral premotor area. This activa-
tion on the observation of another’s actions is thought of as an
understanding of the actions based on representations of the
observer’s corresponding actions [75], [76]. Therefore, these
premotor neurons seem to encode visuomotor representations
regardless of the agents, which recalls the common coding
theory [77], [78]. This hypothesis claims that perceptual and
motor representations share the same format, the so-called
common code. In the common code, the observed actions
of others directly evoke a correspondent motor representation
in the motor-related area. This is also known as the direct
matching hypothesis (e.g., [79] and [80]). In our model, bio-
logical motion representation is acquired as the common code
to evaluate motor and visual prediction errors.

For the emergence of the mirror property, the correspon-
dence problem [81], [82] is an important issue to be solved:
how does an observer correspond an observed movement to
the observer’s motor system in spite of the big differences
between the visual and motor (the observer’s muscle activa-
tion) information? To avoid this problem, we assume that an
observed movement is coded as local motion information, i.e.,
a population-coded velocity of a trajectory, in the same man-
ner as motor information. If global motion or configuration
information is used, differences among the modalities (e.g.,
coordination systems or body parts) appear. The population
coding of the velocities allows the model to input them to the
same RNN, resulting in biological motion detection. However,
how the same format is automatically acquired is still an open
question.

F. Whole-Brain Processing System for Biological
Motion Perception

Finally, we propose a whole-brain processing system for
biological motion perception to clarify the position of our
model (see Fig. 10). A major suggestion is to separate the
processing into two parts: 1) pattern recognition of the motion
in the occipital and temporal lobes and 2) biological motion
detection in the frontal and parietal lobes. A number of stud-
ies have reported that the STS activates during observation
of PLDs (e.g., [1]–[4]). Peuskens et al. [4] hypothesized an
interactive processing among the STS, MT/medial superior
temporal area (MST), and interior temporal gyrus (ITG). The
MT/MST analyzes the complex motion patterns of visual stim-
uli and sends them to the STS and ITG. The ITG extracts
a human-like structure from a group of these motion pat-
terns and sends it to the STS and MT/MST. Based on the
form of the information, the MT/MST refines the analysis of
the motion patterns, and the STS identifies the action type.
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Fig. 10. Brain functions for biological motion perception. We hypothesize the
two main functions: the occipital and temporal lobes address pattern recogni-
tion for body movements while the parietal and frontal lobes detect biological
motions by predicting observed movements. The background brain image is
in [83].

This system corresponds to the higher layer in Troje’s hier-
archical hypothesis [67] and was modeled by Giese and
Poggio [33].

In addition, we hypothesize that a neural network of the
PMd and SPL analyzes observed motions based on a repre-
sentation of self-induced movements, as shown by the colored
blocks in Fig. 10. When reaching for a moving object, for
example, the PMd and SPL predict the velocity of the object
and start to actuate the arm in anticipation. Therefore, it
is reasonable that these areas predict observed movements
and self-induced movements. Our simulation demonstrates
that the motor prediction leads to the detection of biological
motion. This system corresponds to the lower layer in Troje’s
hypothesis [67].

Further, the motor-related areas are modulated by top-down
information from the prefrontal cortex (PFC) (e.g., [5], [84]
and [85]). The PFC estimates an intention or mental state of an
observed action, which is called mentalizing. Such top-down
information is sent to the motor-related area and may be uti-
lized to predict the target movement. Conventional studies for
biological motion have focused on the occipital and temporal
lobes. Further studies on the role of the parietal and frontal
lobes in biological motion perception are expected.

VII. CONCLUSION

We hypothesized that the PMd predicts the velocity of an
observed object based on the representation of desired smooth
limb movements and evaluates how biological the observed
motion is based on the prediction error. We hence conclude the
following. First, the experiments revealed that predictive learn-
ing, achieved using an RNN, is essential for the acquisition of
the biological motion representation, i.e., the one-third power
law. Second, the learned RNN internally generated the accel-
eration information of the input velocity series and represented
the relation between the curvature (computed by the accelera-
tion) and speed. These results are consistent with the fact that
the PMd originally functions as a motor predictor [25]–[29].

Third, the RNN also replicated the tendency that nonvisual
motor learning to facilitate the discrimination of visual stimuli
according to the learned law [31]. Finally, the RNN suc-
cessfully discriminated the wrist and ankle trajectories of
walking humans from nonbiological motions, irrespective of
the walkers’ sex and emotional state. This result is in line
with the psychological theory that the ability to detect biolog-
ical motion differs from the ability to recognize actor’s sex
and emotional state from motion information [67].
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