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Abstract. Identifying the features that contribute to classification using machine 
learning remains a challenging problem in terms of the interpretability and com-
putational complexity of the endeavor. Especially in electroencephalogram 
(EEG) medical applications, it is important for medical doctors and patients to 
understand the reason for the classification. In this paper, we thus propose a 
method to quantify contributions of interpretable EEG features on classification 
using the Shapley sampling value (SSV). In addition, a pruning method is pro-
posed to reduce the SSV computation cost. The pruning is conducted on an EEG 
feature tree, specifically at the sensor (electrode) level, frequency-band level, and 
amplitude-phase level. If the contribution of a feature at a high level (e.g., sensor 
level) is very small, the contributions of features at a lower level (e.g., frequency-
band level) should also be small. The proposed method is verified using two EEG 
datasets: classification of sleep states, and screening of alcoholics. The results 
show that the method reduces the SSV computational complexity while main-
taining high SSV accuracy. Our method will thus increase the importance of data-
driven approaches in EEG analysis. 
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1 Introduction 

Deep learning, especially via convolutional neural networks (CNNs), is a promising 
method of classification of electroencephalogram (EEG) signals. CNNs enable identi-
fication of brain states from raw EEG signals and provide higher classification accuracy 
than conventional machine learning techniques [6, 11]. However, understanding how 
the models classify the signals is difficult because CNNs have highly complex nonlin-
ear functions. Visualization of features, which contribute to their classification, may 
engender neurophysiological insights and explanations that can be applied to medical 
diagnoses. 

To identify the interpretable features of EEG, bandpass filters are often applied to 
EEG signals in standard EEG analysis to separate them into five frequency bands: delta,  
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Fig. 1. Overview of methods to interpret EEG classification and a hierarchy of EEG features. 

theta, alpha, beta, and gamma. Waves in each band are then analyzed in terms of their 
amplitude and phase. Therefore, it is useful to quantify the contributions of amplitude 
and phase in a specific frequency band in the EEG classification. 

Various methods to interpret classification of learning models have been proposed. 
They can be categorized into two groups: backpropagation-based methods, and pertur-
bation-based methods [1]. Backpropagation-based methods, including layer-wise rele-
vance propagation (LRP) [3], deep learning important features (DeepLIFT) [13], inte-
grated gradients (IG) [16], and deep Shapley additive explanations (SHAP) [8], com-
pute the contributions of all input features in accordance with the backpropagation of 
class information from an output layer to an input one (as denoted in orange characters 
in Fig. 1). Their computational cost is relatively low. However, these methods show the 
contributions only in the input feature space, which is not always interpretable. 

In contrast, perturbation-based methods, including the Shapley sampling value 
(SSV) [14], local interpretable model-agnostic explanations (LIME) [10], and kernel 
SHAP [8], regard the classifier as a black-box, i.e., they compute the contributions 
based on pairs of a perturbed (masked or permuted) input and its output (as denoted in 
blue characters in Fig. 1). These methods can display the contributions in a space rep-
resenting the perturbation, which differs from the input feature space. By perturbing the 
classifiers in an interpretable way, we can obtain the contributions in an interpretive 
feature space. However, the computational cost becomes drastically higher as the num-
ber of features increases. 

For visualization of signals contributing to EEG classification, several approaches 
have been proposed. Sturm et al. [15] applied LRP to EEG classifiers. However, LRP 
cannot directly reflect the contributions in the amplitude-phase form because it is based 
on backpropagation. Schirrmeister et al. [11] statistically analyzed EEG classifiers us-
ing two methods: input-feature unit-output correlation maps (IFUOCM) and input-per-
turbation network-prediction correlation maps (IPNPCM). IFUOCM computes corre-
lations between the values of output neurons and the input powers of each frequency. 
IPNPCM calculates correlations of the output values with variations of the perturbed 
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amplitude or phase [5]. However, the correlations do not always exactly reflect the im-
pact of individual features on the prediction. In addition to the above three methods, 
two other methods were proposed in [18] and [7], respectively. However, they require 
modifying input features or specifying the classifier architecture. 

Recently, IG and SHAP were shown to be theoretically superior to other methods 
[8, 16] because they are compatible with the Shapley value (SV) that guarantees the 
equitable attribution of contributions. The SV assigns the contributions according to the 
impact on the prediction of each feature. In perturbation-based methods, which can 
quantify the contributions of any classifier in any feature space, the SSV and kernel 
SHAP also satisfy the SV axioms [8]. 

Based on the above review, the SSV is apparently a prominent method for interpret-
ing EEG classification because it can display the contributions in an interpretable space 
and it satisfies the SV axioms. However, its computational cost is relatively high. In 
this paper, we apply the SSV to EEG classifiers and propose a pruning method to reduce 
its computational cost. EEG features form a tree structure comprised of a sensor (elec-
trode) level, frequency-band level, and amplitude-phase level. If the contribution of a 
feature at a higher level (e.g., sensor level) is very small, the contributions of features 
at the lower levels of the feature (e.g., frequency-band level of the sensor) should also 
be small. Therefore, calculation of the contributions of such features can be ignored or 
pruned. We evaluate the proposed method using two benchmark EEG datasets to con-
firm the reduction of its computational cost. Furthermore, we demonstrate the higher 
interpretability of the proposed method compared to IG, IPNPCM, and IFUOCM. 

2 Method 

The SV was originally proposed to fairly assign the gains to players in cooperative 
game theory [12]. In its application to classification, the contribution 𝜙"(𝑓, 𝑥) of the 𝑖th 
feature out of input feature 𝑥 in a classifier, 𝑓, is given as: 

𝜙"(𝑓, 𝑥) = *
|𝑆|! (𝑀 − |𝑆| − 1)!

𝑀!
[𝑓2∪"(𝑆 ∪ 𝑖) − 𝑓2(𝑆)]

2⊆6∖"

, (1) 

where 𝑀 denotes the number of input features, 𝑆 denotes all possible subsets of an in-
put feature space except for feature 𝑥", and 𝑓2(𝑆) indicates the output of classifier 𝑓 for 
input 𝑆. Basically, the contribution of a feature is defined as how much the output of a 
classifier is reduced by removal of the feature. The amount of reduction is then aver-
aged over all possible combinations of features. This calculation requires computational 
cost 𝒪(2:) for input size 𝑛 and retraining of the classifier for all possible combinations. 
The SSV approximates the SV using a sampling method to reduce its computational 
cost [14]. 

We apply the SSV to EEG classification to identify the contributions of amplitude 
and phase in each frequency band in each sensor (electrode). These features, i.e., am-
plitude phase, frequency bands, and sensors, form a tree structure (left side in Fig. 1). 
We contend that pruning of the tree can reduce the SSV computational cost. First, we 
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calculate the SSV at the sensor level, specifically to assess the influence of the elimi-
nation of a sensor. The number of features (electrodes) at this level is relatively small. 
The sensor signals with small contributions do not contribute to the classification at 
frequency-band or amplitude-phase levels. Therefore, it is not necessary to calculate 
the contributions of such irrelevant sensors at the lower levels. Similarly, calculation of 
the contributions of amplitude and phase can be ignored if the frequency bands do not 
contribute to the classification. The pruning can reduce the computational cost, espe-
cially if a few feature branches contribute to the classification. 

3 Experimental Settings 

We conducted experiments using two EEG datasets to verify the validity of the pro-
posed method. One dataset is the PhysioNet polysomnography (PSG) dataset. It easily 
shows the raw waves and applies the perturbation-based methods because it includes 
data of only three sensors. Therefore, we applied the proposed method and IG to this 
dataset and calculated the computational efficiency of our proposed pruning method. 
The other dataset was the UCI EEG dataset. This dataset contains much more sensor 
data. Therefore, we empirically compared the proposed method with IPNPCM and 
IFUOCM by the input flipping method. 

3.1 PhysioNet polysomnography dataset 

The PhysioNet PSG dataset is a publicly available sleep PSG dataset from PhysioNet 
[4]. It includes data of 20 healthy subjects (ten males; ten females) of ages ranging from 
25 to 34 years. We employed EEG (Fpz-Cz and Pz-Oz electrodes) and electrooculog-
raphy (EOG) signals in this dataset. Their sampling rates were 100 Hz, and the duration 
of epochs was 30 s. During the first night of the experiment, PSG was used to train the 
classifier; during the last night, it was used to test it. We constructed a six-layered CNN, 
as shown in Fig. 2, to classify the data into five sleep stages: Rem, Wake, N1, N2 and 
N3. Its classification accuracy for test data is 81%. The sleep stages are officially la-
beled based on the EEG and EOG signals. For example, the class N3 is defined as the 
large low-frequency power (delta band) in EEG. Therefore, the power of the delta band 
is expected to contribute to CNN classification for N3. 

We compared the results of our proposed method with those of IG [16]. We applied 
them to CNN and visualized their results on randomly chosen N3 data. In addition, we 
evaluated the proposed pruning method in terms of its accuracy and computational cost 
which is the number of calculations of model outputs. We randomly chose 400 data and 
computed their SSVs with and without pruning. A branch was pruned when the contri-
bution was smaller than one-fifth that of the most contributed feature. We regarded the 
SSV of 1,000 samples per feature as the true value, i.e., the SV, and evaluated the dif-
ference between the true value and the value estimated by the SSV with pruning. 
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Fig. 2. CNN architecture in the PhysioNet experiment. 

 
Fig. 3. CNN architecture in the UCI EEG experiment. 

3.2 UCI EEG dataset 

The UCI EEG dataset is a publicly available event-related EEG dataset in the UCI Ma-
chine Learning Repository [2]. The dataset is comprised of EEG data collected using 
64 electrodes at 256 Hz. It contains 120 data items for one subject, each obtained within 
1 s and labeled as “alcoholic” or “control.” The number of subjects is 122 (77 alcoholics 
and 45 controls). We evaluated the accuracy of CNN using ten-fold cross-validation, 
resulting in 75% accuracy, as shown in Fig. 3. We compared the results of the SSV and 
IPNPCM. We applied them on 30 randomly chosen data items. In addition, we empir-
ically quantified the power of explanation using “frequency-band-level flipping” based 
on “pixel flipping” [3]. Then, the output values of the classifier were evaluated while 
removing the most highly contributed features. The output decrease means the power 
of the explanation. 
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Fig. 4. Example of the results of the Shapley sampling value (SSV). Orange and blue percent-
ages indicate the SSVs with and without pruning, respectively. Orange diagonal lines represent 

pruning. 

4 Results 

4.1 Results for the PhysioNet PSG dataset 

An example of the SSV result on the randomly chosen N3 data is shown in Fig. 4. The 
contributions of features are described as percentages of the SSVs in trees. Orange and 
blue percentages denote the contributions with and without pruning, respectively. The 
figure shows that the power of the delta band in the Fpz-Cz electrode is the most im-
portant for this classification, which corresponds to the definition of N3. The percent-
ages of the features are 78% for the SSV with pruning and 76% for the SSV without 
pruning, suggesting that the pruning effect on the accuracy is minimal. Fig. 5 shows an 
example of the IG result, where the colors on raw EEG signals indicate their contribu-
tions. IG shows the contributions in the input space, i.e., raw EEG signals. Therefore, 
this means of visualization is difficult to interpret and requires additional analysis to 
identify the important frequency bands. 

Fig. 6 shows the effects of pruning on the accuracy (left panel) and computational 
cost (right panel). The horizontal axes indicate the number of samplings per feature in 
both panels. The solid and broken curves indicate the values for the SSV with and with-
out pruning, respectively. The green, red, and blue curves represent the results of clas-
sification for the N2 class, all classes, and the N3 class, respectively. The left panel 
shows the approximation errors of the SSVs with respect to the true SVs. The results 
show that the errors of the SSVs with pruning are the same level as those without prun-
ing, especially in the range of samples per feature from 10 to 50. The right panel shows 
that pruning reduces the computational cost to approximately two-thirds. These results 
suggest that the proposed method realizes effective the SV estimation. 
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Fig. 5. Example of the results of ingredient gradients [16]. Curves indicate raw EEG signals 

and their colors represent their contributions at the given time. 

 
Fig. 6. Comparison of the results of the SSV with and without pruning. Left: difference be-

tween the true Shapley value and the SSV. Right: computational cost. 

4.2 Results for the UCI EEG dataset 

The results of the proposed SSV and IPNPCM are shown in Fig. 7 and Fig. 8. The SSV 
demonstrates significant contributions of amplitude in the delta and gamma bands and 
of phase in the delta band. IPNPCM contributes amplitude in the beta and gamma bands 
and phase in the delta band. The beta band was not addressed by the SSV because of 
the already mentioned problem of the correlation. Fig. 9 shows the results of the “fre-
quency-band-level flipping” for the SSV methods with pruning (blue curve), IPNPCM 
(orange curve), and IFUOCM (green curve). The classification scores of the SSV (with 
pruning) significantly decreases compared to those of IPNPCM and IFUOCM, suggest-
ing that the proposed SSV more appropriately elucidates the classification. 
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Fig. 7. Averaged contributions for 100 data items, visualized by the SSV with pruning. 

 
Fig. 8. Averaged contributions for 100 data items, visualized by IPNPCM [11]. 

5 Discussion and Conclusion 

In this paper, we proposed a pruning method in the SV sampling and demonstrated that 
the method can effectively quantify the contributions of features in CNN classifiers. 
We verified the proposed method when applied to two tasks: classification of sleep 
stages and alcoholic screening. In the first experiment, the SSV assigned the largest 
contributions to amplitude in the delta band (Fig. 4), which was consistent with the 
definition of the N3 sleep stage. In the second experiment, the SSV displayed the con-
tributions of amplitude in the delta and gamma bands and phase in the delta band (Fig. 
7). A recent review of EEGs of alcoholics demonstrated that many studies focus on the 
gamma band for screening the event-related potentials of alcoholics [9]. In addition, 
Tcheslavski and Gonen [17] found significant differences of the power and coherence 
in the lower frequency bands between alcoholics and controls. These results correspond 
to our visualization, suggesting that the proposed method can explain the contributing 
features. 



Effectively Interpreting EEG Classification Using the SSV to Prune a Feature Tree 9 

 

 
Fig. 9. Result of frequency-band-level flipping for the SSV with pruning, IPNPCM, and 

IFUOCM [11]. The classification score is normalized so that the scores of the original input are 
1.0. 

Moreover, the conducted experiments produced the following four results. 1) The 
proposed method effectively interpreted the EEG classification in the amplitude-phase 
feature space, while gradient-based methods, including IG, could not explain them in 
such an interpretable feature space (Fig. 5). 2) Our pruning method reduced the com-
putational cost while maintaining the estimation accuracy (Fig. 6). 3) The SSV expla-
nation is superior to the IPNPCM explanation and IFUOCM explanation in terms of 
the pixel-flipping evaluation (Fig. 9). 4) The contributions visualized using the pro-
posed method are consistent with previous findings on EEG biomarkers. 

Although pruning reduces the SSV computational cost, the cost is still much greater 
than those of backpropagation-based methods. We must address this problem to apply 
the SSV to medical data that have a very large number of features. We surmise that 
combining our method with a backpropagation-based method, such as IG, can enable a 
more feasible visualization technique. 
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