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Abstract

We aimed to investigate the principle of emerging interactions
between swarms using the functional differentiation theory of
the brain. We propose a heterogeneous swarms model, where
two swarms having different parameters evolve to maximize
transfer entropy between them. In our simulation, we found
the emergence of heterogeneous behavior among the swarms,
and the appearance of several interaction patterns depending
on the degree of the transfer entropy. Our results imply that
the same principle of functional differentiation may underlie
both the brain and swarms, leading to a novel design of brain-
inspired swarm intelligence.

Introduction
Diverse types of interactions between swarms, e.g., prey-
predator and leader-follower, are observed in organisms’ be-
havior. In such collective behavior, swarms have varying
roles, i.e., they are functionally differentiated. This hetero-
geneity is reportedly a key in the emergence of interactions
and pattern formation (Sayama, 2009).

In mathematical neuroscience, Yamaguti and Tsuda
(2015) proposed self-organization with constraints as a prin-
ciple of functional differentiation in the brain. They showed
that maximizing the transfer entropies between neural mod-
ules allows the modules to have different dynamics and to
interact with each other.

In this paper, we hypothesize that the principle of func-
tional differentiation can also be applied to multi-swarm
interactions. We extend the conventional boids model
(Reynolds, 1987) to a heterogeneous swarms model and
maximize the transfer entropies between the swarms using a
genetic algorithm. Consequently, functional differentiation
in the swarms is expected to emerge as in the brain.

Model
We propose a heterogeneous swarms model (Fig. 1), in
which two swarms have different boid parameters. In a typ-
ical boids model, the velocity of the ith agent is updated
based on its neighbor agents:

Figure 1: Heterogeneous swarms model. In an initial gen-
eration (left), all agents have the same parameters, and the
labels of swarms, X or Y, are randomly assigned to agents.
Agents belonging to a swarm have the same parameters
which can be different from those of the other swarm. Then,
the parameters for swarms X and Y are optimized to max-
imize transfer entropies between them. Consequently, the
parameters become heterogeneous and the swarms begin to
interact, suggesting that their functions have now differenti-
ated.

∆v⃗i = ws

∑
j∈Ss

x⃗i − x⃗j

|x⃗i − x⃗j |
+ wa

(
v⃗i −

∑
j∈Sa

v⃗j

na

)

+ wc

(
x⃗i −

∑
j∈Sc

x⃗j

nc

)
+ ϵ (t)· (1)

where x⃗i and v⃗i denote the position and velocity of the ith
agent, respectively. The parameters, ws, wa, and wc denote
the weights for separation, alignment, and cohesion among
agents, respectively. Ss, Sa, and Sc denote the set of neigh-
boring agents for each rule, and va and vc indicate the num-
ber of the neighboring agents. Noise ϵ (t) is added so as to
make behavior complex.

Our model assumes two swarms, labeled as X and Y.
They have different weights while all agents have the same
weights in the typical model. For example, the weight for
separation, Ws, consists of weights for the inter-swarms,
wX→Y and wY→X , and weights for the intra-swarms,



Figure 2: Behavior of the optimized heterogeneous swarms. (a): prey-predator like dynamics when the fitness was higher. (b):
rotating leader dynamics when the fitness was lower.
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The weights for alignment and cohesion are defined in the
same manner.

The twelve weight parameters in total are optimized using
a standard genetic algorithm. The fitness is defined as the
product of transfer entropies between the averaged series of
the velocity of the swarms: TX→Y ∗ TY→X , where TX→Y

denotes the transfer entropy from swarm X to swarm Y, and
TY→X denotes vice versa. In the initial generation, the la-
bels of swarms are randomly assigned to agents, and they
have the same weight parameters. Then, the weights are
optimized to maximize the transfer entropies through elite
selection.

Results
We constructed a 2D simulator of 100 agents, in which a
swarm consisted of 50 agents. The population in a genera-
tion was 96. The history length and delay for transfer en-
tropy were 1.

Simulation results showed that the fitness converged in
two values: approximately 0.3 and 0.04. Fig. 2 (a) and (b)
illustrate behavior of the swarms when the consequent fit-
nesses were high and low, respectively. In both cases, the
swarms had different parameters and seemed to have differ-
ent functions. In Fig. 2 (a), the blue swarm appears to be es-
caping from the red swarm, which looks like prey-predator
interaction. In Fig. 2 (b), the blue swarm appears to rotate
and the red swarm loosely follows it.

Discussion
In this study, we proposed a heterogeneous swarms model,
where two swarms with different parameters evolve to maxi-
mize transfer entropy between them. Our simulation showed

that functional differentiation and interactions between het-
erogeneous swarms were developed by maximizing the
transfer entropy. The interaction patterns of the swarms var-
ied depending on the fitness, suggesting that the same prin-
ciple may underlie function differentiation in swarms and
the brain. We suppose that the interaction between hetero-
geneous swarms is the foundation of division of labor, which
is ubiquitously observed in biological systems, especially in
social insects (Duarte et al., 2011). In addition to the con-
ventional explanation that division of labor is due to effi-
cient foraging, our model suggests that such an evolutionary
process might involve an increase in information transfer or
communication between swarms. In future, we plan to de-
velop our model further by imposing tasks on the swarms to
investigate the contribution of the functional differentiation
to task performance, adaptability, and robustness.
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