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In this work, we propose a computational model employing a recurrent neural network for modeling the 
developmental process of action prediction ability. Our hypothesis is that temporal memory is a driving force 
mechanism for the development of this ability. While keeping consistency with the psychological findings, our 
experimental results confirmed the hypothesis, showing that memory capacity has a strong influence on the 
development of prediction abilities. 
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1. Introduction 
A recent work by Kanakogi and Itakura [1] has indicated that in 

humans the ability to make predictions of action goals of others 

emerges in infancy as early as six months. In that work, trajectory 

of the gaze of infants 4, 6, 8 and 10 month-olds and adults was 

measured in order to assess their predictive ability. From the 

experimental results, adults was found to shift their gaze in a 

predictive manner, six month and older infants performed 

predictively but only for actions which were clearly goal-oriented, 

and four month-old infants were not able to make predictions. 

Additionally, it was found that prediction in adults was performed 

significantly earlier in time in comparison with infants 6, 8, and 10 

months, which in turn performed earlier than 4 month old infants. 

This experiment demonstrated that infants undergo a process of 

development of their ability to make predictions of action goals, 

which involves perception of acting agents and improvement of 

cognitive capacities. Myowa et al [2] has also contrasted 

anticipation of action goals in humans and chimpanzees, revealing 

that chimpanzees are also able to anticipate goals as humans, 

although they scan goal-directed actions differently. 

Regarded to play a crucial role in cognition development, 

working memory is an important concept in the field of cognitive 

developmental psychology. Working memory is a conceptual 

structure in charge of storing temporal information during execution 

of actions, and then, is related to several cognitive processes. In 

relation to the development of working memory, Pelphrey et al [3] 

has indicated that visuospatial short-term capacity, which can be 

considered a type of working memory, increases in infancy between 

the ages of 6 and 12 months following a linear pattern, and the age 

at which it becomes evident may vary from 6 to 8 months of age 

depending on the complexity of tasks. 

In this work we address the problem of emergence and 

development of action prediction within the field of Cognitive 

Developmental Robotics [4]. Based on the findings of Kanakogi 

and Itakura [1], and Pelphrey et al [3], we found that the period of 

development of visuospatial short-term memory and the period of 

development of predictive eye movement are synchronized. We 

therefore hypothesize that working memory supports the 

development of predictive behavior. Then we propose a 

computational model based on the concept of working memory to 

explain the developmental mechanism of predictive eye movement. 

The experimental results demonstrated that temporal memory 

capacity is intrinsically related to the development of predictive 

behaviour. 

 

2. Basic Ideas of our Approach 
In order to explain the findings in Kanakogi and Itakura [1] 

regarding the development of eye predictive movement, we state the 

following hypotheses from a computational perspective: 

1. It is possible to infer the goal of observed movements by 

learning to predict the attention target, which in turn 

originates from the visual saliency-based attention. 

2. Development of working memory capacity supports the 

emergence and development of predictive eye movement. 

3. The performance on prediction depends on the visual 

familiarity with an acting object. Regarding the experiment 

of Kanakogi and Itakura [1] in which infants were not able 

to perform in a predictive manner with a mechanical claw, 

we attribute that to the lack of visual experience with claws. 

The computational model that we propose to carry out the 

validation of our hypotheses is shown in Fig. 1. In this model, first, 

the primitive features of the input images are extracted by using a 

bottom-up approach. Then, those primitive features are employed 

for training a Recurrent Neural Network. During the training, the 

temporal memory capacity is increased progressively. The output of 

the neural network is used to calculate the predicted location. And 

finally the gate module selects the next attention location between 

the saliency-based attention location and the prediction-based 

attention location. The components of this model are explained in 

the following sections. 

 

 

 

 

 

 

 

 

 

 



Fig. 1 Proposed computational model for development of 

predictive eye movement. 

 

2.1 Saliency-Based Attention Module 

The saliency-based attention module is a bottom-up approach for 

visual attention selection based on the work of Nagai et al [5] which 

uses a computational model of saliency map proposed by Itti et al 

[6]. The importance of the concept of saliency map lies in the fact 

that it is regarded to be a model of primates’ low-level visual 

attention. 

The input of this module is a sequence of images. In the first 

stage, motion flow, color component and edge component of images 

are employed for calculating a saliency map, as shown in Fig. 2. 

Then, by using a probabilistic function, one location is selected 

among the most salient locations of the saliency map. Finally, 

primitive features are extracted from the region around the selected 

location: color, motion length and motion orientation. The output of 

this module is the stochastic-based attention location and the 

extracted primitive features. 

 

Fig. 2 Computation of Saliency Map. 

 

2.2 Predictive Learning Module 

The function of the predictive learning module is learning to 

predict color and motion features which are employed for 

calculating the prediction-based attention location. As shown in Fig. 

1, the main components of this module are: a recurrent neural 

network, which is a special class of neural network whose main 

characteristic is exhibiting dynamic temporal behavior; a memory 

component for temporal storage; and a component called “Event 

Detection” whose functionality will be explained later in this 

section. The inputs of this module are the primitive features 

extracted in the saliency-based attention module: color, motion 

length and motion orientation. The outputs of the neural network are 

the predicted motion and color features. 

The recurrent neural network receives the primitive features as 

inputs. Then, the output of the neural network is compared to the 

teaching data provided by the component “Event Detection”, and 

the result is fed back as training error. 

The component called “temporal memory” is in charge of 

providing temporal storage of feature data, and its capacity is 

relative to the amount of data stored simultaneously for a certain 

amount time (Hereafter the storage capacity of the temporal 

memory will be expressed in frames and will be referred as “Time 

Window”). 

The component “Event Detection” is in charge of providing the 

appropriate teaching data by accessing and analyzing the data stored 

in temporal memory. The teaching data is calculated as follow: 

 If the component called Event Detection detects a significant 

change in the color feature within the color features of 

temporarily stored frames, then the teaching data will be the 

color of the detected frame and the motion trajectory 

required for reaching the location of the detected frame. 

 If it is not detected a significant change among temporarily 

stored frames, then the teaching data will be the color of the 

next frame and the motion trajectory for reaching the next 

frame. 

 

2.3 Gate Module 

The function of the gate module is selecting the next attention 

location between the saliency-based attention location and the 

prediction-based attention location. The criterion for selection is 

based on the principle of gradual development employing stochastic 

selection, and therefore we employ the following equations: 

 
(1)              

 
(2) 

 

Where, 

 L(t+1) represents the next location and is the output of 

the gate module. 

 Dc(t) changes from 0 to 1 when the color predicted by 

the neural network differs from the color of the current 

attention point, which indicates that a future event has 

been predicted. 

 Ls(t) is the location given by the saliency-based module. 

 Lp(t) is the location predicted by the neural network. 

 Sal(X(t)) is the value of saliency in the location X at 

time t. 

 M(t) is the output of the function P, which is a 

probability function which uses a distribution of 

weights based on the saliency values of the candidate 
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locations (Ls and Lp) and a sigmoid function “Sig”. 

The most salient location has more probability to be 

selected. The output of P is 0 or 1. 

The sigmoidal function, mentioned previously, is employed for 

shifting gradually the attention selection from the stochastic-based 

attention to the prediction-based attention while the learning time 

increases. The sigmoidal function can be formulated as follow: 

 

 

             (3) 

 

Where Sig is the probability of shifting from the saliency-based 

attention to the prediction-based attention, α is a scale factor, and n 

is the learning step. The graphical representation of the sigmoidal 

function is shown in Fig. 3. 

Fig. 3 Probabilistic function for attention selection in the gate 

module. 

 

3. Experimental Settings and Results 
In our experiment, we reproduced similar experimental settings to 

those described in Kanakogi and Itakura [1]. We considered two 

experimental cases, the hand grasping condition and the claw 

grasping condition, which are shown in the left side and the right 

side of Fig. 4, respectively. 

 

Fig. 4 Right: hand grasping condition. Left: mechanical claw 

condition. 

In the learning phase six videos were employed for training the 

system: Three videos corresponded to a hand grasping an object 

located at the left of the image and the other three videos to a hand 

grasping an object located at the right image. The positions of the 

two target objects were fixed and the same for all the videos. And, 

in order to test our hypothesis regarding the effect of the lack of 

visual experience with claws, no video of mechanical claw was used 

for training. The recurrent neural network consisted of 26 input 

neurons, 26 output neurons and 25 hidden layer neurons. The size of 

the Time Window was modified gradually from 0 to 19 frames 

during training, the learning iterations for each window was of 5000 

steps, and the scale factor α of the sigmoidal function was 10. 

The results of the experiments explained in the following sections 

were classified into the following categories for analysis purposes: 

 Correct predictions: The system predicted successfully 

color and location (angle and distance) of the target 

object. 

 Non prediction: The target object was not predicted 

before the hand (or claw) arrival. 

 Incorrect prediction: The neural network predicted an 

incorrect color regardless of the accuracy of the 

predicted location. 

 

3.1 Hand Condition Test 

In the testing phase twenty videos were employed for the hand 

grasping condition. Ten videos were right-side object grasping and 

the other ten videos were left-side object grasping. The average size 

of each video was about 70 frames, and the portion corresponding 

to motion was about 30 frames. The result of the test is shown in 

Fig. 5. The vertical axis represents the percentage rate for each 

category, and the horizontal axis represents both the learning step 

and the time window which increased gradually during training. 

Fig. 5 Prediction Rate versus size of Time Window per each 

category for hand condition. 

In hand condition, the success rate increased gradually when the 

size of the time windows was larger than 9 frames, reaching its 

maximum average value of 90% for time windows larger than 14 

frames. However, when the size of the time windows was smaller 

than 9 frames, the “Non Prediction” category was high in relation to 

the possible effect of the sigmoidal function. This can be explained 

by the fact that, when the time window is still relatively narrow the 

learning module is not still able to detect significant changes from 

the visual information. Finally, the average rate of “Incorrect 

Prediction” category was significantly low. These results 

demonstrate the validity of our computational model for inferring 

goals by learning to predict the attention target, in accordance with 

our first hypothesis. Additionally, in relation to the emergence of 

prediction, the results also confirmed that the temporal memory 

played a crucial role, as we stated in our second hypothesis. 

The relation between prediction time and the size of the time 

window is shown in Fig. 6, where the vertical axis represents how 

many frames earlier the prediction was achieved. In this graph we 

can see that the prediction was achieved in average 5 frames earlier 

than the arrival of the hand when the size of the time window was 

equal to 8. Then, the time at which prediction was achieved 
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continued to become earlier in proportion to the size of the time 

window. And when the size of the time window was 19 frames, the 

prediction was achieved in average 14 frames earlier than the arrival 

of the hand. This result demonstrates that the prediction became 

earlier when the size of the time window was expanded, which is 

also in line with our second hypothesis. 

Fig. 6 Prediction Time versus size of Time Window for “Correct 

Prediction”. 

 

3.2 Claw Condition Test 

In the testing phase twenty videos were employed for the 

mechanical claw condition. Ten videos were right-side object 

grasping and the other ten were left-side object grasping. The 

average size of each video was about 80 frames, and the portion 

corresponding to motion was about 40 frames. The result of the test 

is shown in Fig. 7. The vertical axis represents the percentage rate 

for each category, and the horizontal axis represents both the 

learning step and the time window which increased gradually during 

training. 

Fig. 7 Prediction Rate versus size of Time Window per each 

category for claw condition. 

One of the objectives of this experiment was testing whether the 

neural network did make any prediction if the moving object was a 

mechanical claw but not a hand. The result shown in Fig. 7 revealed 

that the rate of “correct prediction” increased significantly during 

some period of the learning process, which means that the neural 

network tried to make predictions when claw grasping videos were 

introduced, in spite of the fact that the neural network was trained 

using only the physical description of the hand. However, the global 

average success rate was low, and then the prediction results were 

not stable enough. We attribute that dynamical and unstable change 

to the limited amount of types of objects employed for training the 

neural network, and then there was still some dependence on the 

physical attributes of the acting object.  

These experimental results indicate to a certain degree that the 

motion information of the hand had a stronger influence on 

prediction training than its physical information. This result can be 

explained by the fact that during training the prediction of the target 

depends more on motion and less on the appearance of the moving 

object. 

 

4. Conclusion and Discussion 
In this paper, we have proposed a computational model to explain 

the developmental mechanism of predictive eye movement. The 

experimental results showed that, in accordance with our first 

hypothesis, learning to predict the attention target originated from 

visual saliency was proven to be valid for implementing a 

computational model of predictive eye movement. For our second 

hypothesis, the experimental results demonstrated that temporal 

memory facilitates the emergence of predictive behavior. 

Furthermore, when the size of the temporal memory was increased, 

the results showed that the prediction time became significantly 

earlier. This indicates that the development of the temporal memory 

had significant influence on the development of action prediction. 

Regarding the third hypothesis, which attributed the difference in 

behaviour under claw condition and hand condition to the lack of 

visual experience, the experimental results were not conclusive. 

However, some results suggested that our current model might not 

be sufficient to explain this phenomenon and additional cognitive 

mechanisms should be also considered. To conclude, our 

computational model was confirmed to follow a developmental 

process for acquiring prediction ability. 

As a next step, visual mechanisms are required to distinguish 

between hand condition and mechanical claw condition. Also, 

considerations regarding development of motor skills in connection 

with the mirror neuron system will be part of a future work. 
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