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Abstract—Understanding others’ actions as goal-directed is
a key mechanism to develop social cognitive abilities such as
imitation and cooperation. Recent findings in psychology have
demonstrated that the ability to predict the goal of observed
actions emerges as early as six months in infancy. However, what
mechanisms are involved and how they trigger the development
of this ability are still open questions. In this paper, we propose
a computational model employing a recurrent neural network to
reproduce the developmental process of goal-directed gaze shift.
Our hypothesis is that it is possible to infer the goal of observed
actions by learning to predict the attention target originated
from bottom-up visual attention. While keeping consistency with
psychological findings, our experimental results confirmed the
hypothesis that learning to predict the attention targets leads to
the development of predictive gaze shift to the action goal.
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I. INTRODUCTION

The ability to infer the intentions of others is crucial in hu-
mans to engage in social relations. It is argued that a prerequi-
site to infer the intentions of others is the ability to understand
their actions as goal-directed, which means to evaluate actions
based on causal relations. From a developmental point of view,
it is suggested that understanding actions as goal-directed is
a key mechanism to develop social cognitive abilities such
as imitation and cooperation. However, what mechanisms are
involved and how they trigger the development of this ability
are still open questions.

Several studies have been carried out to understand when
and how infants start to get involved in goal-directed actions.
A remarkable work regarding this issue is the one conducted
by Woodward [1]. In that study infants (5, 6 and 9 months
old) were shown actors reaching for and grasping one of two
objects. For the experiments four actors were employed: a
human arm, a rod, a flat occluder and a mechanical grasping
tool. The experimental results indicated that when infants
were habituated to a goal-directed action (i.e., the human arm
condition), they showed a stronger novelty response to test
events that varied the goal of the action (e.g., the grasped
object) than test events that varied the physical properties
of the action (e.g., the motion path). On the other hand, if
the actions were not goal-directed (i.e., the rod and the flat
occluder conditions), or were goal-directed but difficult to infer
the agency of the actor (i.e., the mechanical grasping tool
condition), infants did not prefer one type of response to the
other (i.e., the goal of the action versus the properties of the

action). These results showed that infants differentiate between
the actions of human beings and the motions of inanimate
objects. Nonetheless, it is noteworthy to remark that their gaze
analysis indicated that both the hand and the inanimate objects
were equally effective as spotlights of attention.

Sommerville et al. [2] in a subsequent study focused on
the impact of action experience on action perception and vice
versa in relation to infants’ ability to detect the goal of a
grasping event. In this study infants participated in a visual
habituation experiment, similar to the one in Woodward [1].
However, the experiment differed from the previous one in that
a group of infants were allowed to interact with the objects
prior to the visual habituation. The experimental results indi-
cated that the experience of grasping objects enabled infants
to detect the goal-directed structure of other persons’ actions,
that is, an impact of action execution on action perception.

In a recent work, Kanakogi and Itakura [3] addressed the
issue of the emergence of prediction of goal-oriented actions in
infancy. They showed that the ability to predict the action goals
of others emerges as early as six months. Their experiment
measured the visual attention of infants (4, 6, 8 and 10 months
old) and adults in order to assess their prediction ability.
The experimental settings consisted of three conditions: the
first one was a hand reaching for and grasping one of two
objects, the second one was the back of a hand reaching one
of two objects but without grasping it, and the third one was a
mechanical claw reaching for and grasping one of two objects.
From the experimental results, adults were found to shift
their gazes in a predictive manner under the three conditions,
whereas 6-month-old and older infants performed predictively
but only for actions which were clearly goal-oriented (i.e.,
hand grasping condition). In contrast, 4-month-olds were not
able to make predictions. Additionally, adults were found to
make predictions significantly earlier in comparison with 6-,
8-, and 10-month-olds. This study demonstrated that the ability
to predict action goals undergoes a developmental process and
that infants’ prediction capability differs depending on the
reaching agent.

In a later study, Cannon and Woordward [4], arguing that
previous experiments lacked distinguishing goal prediction
from movement anticipation, carried out a modified experi-
ment. In their experiment infants were first familiarized with
a reaching action directed to one of two objects. The location
of the objects were then swapped, and infants’ reactions were



assessed as the agent made an incomplete reach between
the objects. The focus of their experiment was to assess
the infants’ predictions when the context had changed (i.e.,
the same movement would not realize the prior goal). Their
experimental results showed that infants in the hand condition
generated predictive gaze at the goal object at a different
location, whereas infants in the claw condition generated
predictive gaze at the location of the familiarized movement.
Finally, their results showed, as in [1], that both the hand and
the inanimate objects attracted infants’ attention effectively.
Among other studies on development of goal-directed gaze
shift, Myowa-Yamakoshi et al. [5] have also contrasted the
anticipation of action goals in humans with in chimpanzees,
revealing that chimpanzees are also able to anticipate the goals
as human do, but scan the actions differently.

In relation to the influence of perceptual features on goal-
directed gaze shift, Henrich et al. [6] assessed the impact of the
goal saliency on infants’ ability to anticipate reaching actions.
In their experiment, small and large goal objects were used
for representing the low-salience and high-salience conditions,
respectively. Their experimental results demonstrated that the
goal saliency had an impact on goal anticipation in infants:
The high-salient objects elicited earlier prediction of infants
than the low-salient objects. They argued that action prediction
might be influenced by the properties of the goal such as the
size of the goal object.

In this work we address the issue of the development of
goal-directed gaze shift from the perspective of cognitive
developmental robotics [7]. Our hypothesis is that social
cognitive abilities can develop through experiences based on
simple innate mechanisms. A preceding study based on this
hypothesis is the work done by Nagai et al. [8]. They proposed
a computational model for the development of joint attention.
Their model consisting of saliency-based visual attention and
sensorimotor learning enabled a robot to acquire the ability to
follow other person’s gaze direction. Similarly, Balkenius and
Johansson [9] proposed a developmental mechanism of smooth
pursuit. Their model reproduced a transition from saccadic
pursuit to smooth pursuit as a result of a gradually developing
ability to predict the movement of a target.

Inspired by the above studies, we propose a computational
model for the development of goal-directed gaze shift. We
suggest that the ability of goal-directed gaze shift emerges
through learning to predict the attention target based on the
perceptual salience. Our model consists of three modules: a
saliency-based attention module, which enables the system to
gaze at a conspicuous target; a predictive learning module,
which learns to predict the gaze shift generated by the saliency
module; and a gate, which selects the output from the above
two modules. Our model also integrates a working memory
as a function of the predictive learning module in order to
reproduce the gradual decrease in the prediction time as shown
in [3]. Pelphrey et al. [10] have indicated that visuospatial
short-term capacity, which is regarded as an early form of
working memory, increases linearly from 6 to 12 months. The
following sections, first, describe in detail our proposed model,
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Fig. 1: Proposed computational model for development of
predictive eye movement.

then explain the experiments settings employed for verifying
our hypothesis, and finally introduce the experimental results,
conclusions and future work.

II. BASIC IDEAS OF OUR APPROACH

From a computational perspective, Kanakogi and Itakura’s
[3] work on the development of predictive eye movement
could be interpreted as the following hypotheses:

1) Itis possible to infer the goal of observed movements by
learning to predict the attention target originated from
saliency-based visual attention.

2) The performance on action prediction depends on the
visual familiarity with an agent. The difficulty to predict
the goal of an inanimate movement (i.e., a mechanical
claw in [3]) can be attributed to a lack of visual
experience with it.

3) The development of working memory capacity supports
the acceleration of goal-directed gaze shift.

A computational model to verify our hypotheses is shown in
Fig. 1. In this model, first, the saliency-based attention module
extracts the primitive features of the input images by using
a bottom-up approach. Then, the predictive learning module
employs those primitive features for training a recurrent neural
network. During the training, the temporal memory capacity
increases progressively. The output of the neural network is
used to calculate the predicted attention location. Finally the
gate module selects the next location to attend to between
the saliency-based and the prediction-based attention. The
following sections explain in detail these modules.

A. Saliency-Based Attention Module

The saliency-based attention module employs a bottom-up
approach for visual attention selection [11], which extends Itti
et al’s [12] model with a stochastic attention selection. An
important concept of the saliency model is to rely only on
perceptual features of the environment and thus to reproduce
visual attention similar to younger infants [13]. Additionally,



visual saliency of action goals is suggested to influence on
infants ability to anticipate reaching actions [6].

The input of this module is a sequence of images. The mod-
ule first computes color, edge and optical flow, and calculates
a saliency map. Then, one location L (¢ + 1) at time t+1 is
selected among the most salient locations of the saliency map
by using a probabilistic function. Color and motion data are
extracted as primitive features from the surrounding region of
Ls(t+1). These features, representing the static and dynamic
information of the attention, are used by the predictive learning
module to train a recurrent neural network. Finally, the module
outputs L (¢+1) and the features F(¢+1), which is represented
with a population coding [14].

B. Predictive Learning Module

This module learns to predict F(¢ + 1) (i.e., the color
and motion vector) and then calculate the future attention
location L, (¢ + 1) based on F(¢ + 1). The main components
of this module are: a working memory for temporal storage;
a recurrent neural network capable of encoding the dynamic
structure of the visual features; and an event detector.

The working memory is in charge of storing the past feature
data F(t —w + 1),F(t — w + 2), ..., F(¢), where w indicates
the length of a time window. The data are used to train a
recurrent neural network, which predicts the above features
sequentially from F(¢ — w + 1). The training is conducted
by back propagation through time, where the teaching data
is provided by the event detector. The function of the event
detector is to detect a change in the attention target using
the color information and calculate the training data for the
recurrent neural network. The importance of this mechanism
is that events involving a perceptual feature change are used
to detect the goal of the observed action: when the module
detects a color change in F(¢), the training data is calculated
so as to the neural network can learn to associate the current
location F(¢) as a target location to be predicted from the
past locations F(¢t — w + 1),...,F(¢ — 1). The required steps to
calculate the teaching data are as follows:

« if no significant color changes are detected among the
frames stored in temporal memory, the training data for
input F(t — w + 1) will be F(t — w + 2);

« instead, if a color change is detected in F(¢ — w + n),
the training data for input F(¢ — w + 1) will be the color
component F,o-(t — w + n) and the vectorial sum of
motion vectors Fotion (t—w=+2)+..4F otion (t—w—+mn).

In order to decide a potential future attention location L, (t+
1) the prediction learning module first calculates the locations
corresponding to the predicted color L.y (¢ + 1) and to the
predicted motion Ly,otion (t + 1). Leoior(t + 1) is determined
by finding the image location which contains color similar to
the predicted one, whereas L,,oti0n(t + 1) is calculated by
adding the predicted motion vector to the current attention
location. The module then determines the output L, (t + 1)
using Leojor (t + 1) and Lyotion (t + 1) as follows:

Lcolor (t + 1)7
Lmotion (t + ]-)a

if0; >r(t+1)
otherwise

L,(t+1) :{ (D

B Sal[Leojor (t + 1)]
— Sal[Leotor (t + 1)] + Sal[Lanotion (t +1)]’

where Sal[X(t)] is the saliency value at the location X(¢); and
r(t 4+ 1) is a random value ranging from O to 1. That is, the
module selects stochastically the attention location based on
the salience at Lojor(t + 1) and Lotion (t + 1).
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C. Gate Module

The function of the gate module is to select the next
attention location L(¢ + 1) from Ly(¢ + 1) and L, (¢t + 1).
The module employs the following equations:

L,(t+1),
Lé(t + 1)a

ifO >r(t+1)
otherwise

L(t+1)= { 3)

. Haiy - Sal[L,(t +1)]
27 Hayy  SallLy(t+ 1)] + (1 — Hayg) - Sal[Ly(t + 1))

“4)
where H;, is a sigmoidal function formulated by:
1
Hyg=1——--—. 5
sig =1- T am 5)

o is a scale factor, and n is the learning step. Using this
function the system gradually shifts the attention location from
the saliency-based gaze location L(¢ 4 1) to the prediction-
based location L,(¢ + 1), and as a consequence the system
develops the ability of predictive gaze shift.

III. EXPERIMENTAL SETTINGS AND RESULTS

In our experiment we reproduced similar experimental set-
tings to those described in [3]. We designed two experimental
conditions: a hand grasping condition and a claw grasping
condition. In the video stimuli a hand and a claw moved
diagonally from the bottom center of the image towards a
top left/right corner until reaching one of two target objects,
as shown in the top and the bottom of Fig. 2, respectively.

In the learning phase, six videos were employed for training
the proposed model: Three videos corresponded to a hand
grasping the top-left object, while the other three corresponded
to a hand grasping the top-right object. No video of mechanical
claw was used for training in order to verify our hypothesis
regarding the effect of the lack of visual experiences with
claws. The positions of the two objects were fixed and the
same for all the videos. The six videos slightly varied in
terms of the motion trajectory of the hand in order to make
the network acquire generalization capability. In addition, the
videos were created so as to have the same length of time: In
the hand condition, the average size of each video was about
64 frames, and the portion corresponding to motion was about
30 frames; In the claw condition, the average size of each
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Fig. 2: Hand grasping condition (top) and mechanical claw
condition (bottom). The leftmost image shows the initial state,
and the middle and rightmost images show the final states
under each condition.
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Fig. 3: Example of gaze pattern in hand condition: (a) before
training and (b) at later stage of training (learning steps
=75000, w=15).

video was about 66 frames, and the portion corresponding to
motion was about 29 frames.

The recurrent neural network consisted of 27 input neurons
(7 for the motion length, 12 for the motion angle and 8 for the
color), 27 output neurons (the same distribution as the input
neurons) and 25 hidden layer neurons. The time window of
the working memory w was gradually expanded from 1 to
19 frames while the network was trained for 5000 steps with
each window size. The scale factor « in Eq. (5) was 10. For
statistical analysis purposes, we set ten different random initial
weights for training the neural network.

Results of the model’s prediction were categorizes as fol-
lows:

o Correct predictions: The model predicted successfully the
target object using color and/or a motion vector (i.e.,
location) before the hand or the claw reached the object.

o Non prediction: The target object was not predicted
before the hand or the claw arrival.

o Incorrect prediction: The predicted object did not corre-
spond to the target object.

Fig. 3 shows examples of the attention location (indicated
by a circle in the images) before (a) and after learning (b).

In Fig. 3 (a), the system always gazes at the reaching hand
(i.e., no prediction) because it mainly uses the output of the
saliency-based attention module. In Fig. 3 (b), in contrast, the
system predicts the target object before the hand reaches it.
This prediction ability is acquired by learning the temporal
sequences of saliency-based attention.

A. Hand Condition Test

In the testing phase twenty videos were employed for the
hand grasping condition. Ten videos were reaching for right-
side object and the other ten videos were for left-side object.
The results of the test are shown in Fig. 4. For both Figs. 4
(a) and (b) the horizontal axis represents the learning step and
the time window indicated at the bottom and the top of the
graph, respectively. The vertical axis in Fig. 4 (a) represents
the percentage rate for correct, incorrect, and non prediction,
and that in Fig. 4 (b) represents how many frames earlier the
prediction was achieved than the hand arrival at the target.

In the hand condition, the correct prediction rate increased
gradually when the size of the time windows was larger
than 9 frames as shown in Fig. 4 (a), and reached about
70 % with the time window of 14 frames. The average
standard deviation was about 15 % which is relatively small.
After training, the correct prediction rate was significantly
higher than the non-prediction rate, which indicates that the
system performed predictively. In contrast, the average rate of
incorrect prediction category was maintained significantly low
over learning. These results demonstrate the validity of our
computational model for predicting a reaching action.

With respect to the relation between the anticipation time
and the size of the time window, Fig. 4 (b) shows that the gaze
shift was first achieved when the time window expanded to 8
frames. Then, the prediction time became earlier in proportion
to the size of the time window. The earliest prediction (i.e., 14
frames earlier than the goal achievement) was produced when
the time window became 19 frames. This result demonstrates
that the development of the working memory facilitates the
action prediction, which is in accordance with our third
hypothesis.

B. Claw Condition Test

Similar to the previous experiment, twenty videos were
employed for testing under the mechanical claw condition. Ten
videos were reaching for the right-side object, and the other
ten videos were for left-side object. The results are shown in
Fig. 5.

In the claw condition, the average rate of the correct
prediction was about 45 % at the end of learning, and did
not surpass the non-prediction rate as shown in Fig. 5 (a).
It is, however, surprising that our model could achieve the
goal prediction to some extent despite no training with the
claw stimuli. The large variance of the result indicates that our
model could correctly predict the goal of claw reaching under
certain conditions. To understand this, we should remember
that our model utilizes both the static and dynamic image
features for predictive learning. The former represents what
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Fig. 4: Experimental results in hand condition. (a) prediction
rate versus size of time window (b) prediction time versus size
of time window for correct prediction.

the attention target is (i.e., a reaching agent or an object to be
reached for), whereas the latter indicates in which direction
the attention moves. As a consequence, even though the static
information of the claw differed from the one used for training
(i.e., the hand), the dynamic feature enabled the system to
predict the direction of the target object.

The relation between the anticipation time and the size
of the time window is plotted in Fig. 5 (b). In this graph
we observe a similar result to the one obtained in the hand
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Fig. 5: Experimental results in claw condition. (a) prediction
rate versus size of time window (b) prediction time versus size
of time window for correct prediction.

condition: The time at which prediction was achieved became
earlier in proportion to the size of the time window.

Note that one of the objectives of our experiment was to
test whether the neural network did make any prediction if
the moving agent was a mechanical claw but not a hand. The
results for the claw condition show that the performance of
the prediction ability decreased in comparison to the results
for the hand condition. This supports our hypothesis that visual
experiences of actions lead to the development of the ability



to predict the same actions.

IV. CONCLUSION

In this paper, we have proposed a computational model
to explain the development of goal-directed gaze shift. The
experimental results showed that, in accordance with our first
hypothesis, learning to predict the attention target originated
from visual saliency could lead to the emergence of goal-
directed gaze shift. Regarding the second hypothesis, the
prediction performance of our system in the claw condition
was significantly lower than in the hand condition. That is, our
results verified that the visual experience of actions influences
on the ability to predict the actions. For the third hypothesis,
the experimental results demonstrated that temporal memory
facilitates the development of prediction. To conclude, our
computational model reproduced the multiple aspects of infant
development of predictive gaze shift.

Our current model employed a sigmoid function for the
gate to generate a transition from saliency-based attention
to prediction-based gaze shift. This idea is based on the
assumption that the neural network becomes able to predict
more accurate locations by decreasing the prediction error as
learning steps increase. Further work is required to model an
automatic transition using a value of the prediction error.

Regarding the extension of our model to more natural
scenarios, some considerations must be done. First, in re-
lation to the experience of infants, the works of Cannon
and Woodward [4] and Kanakogi and Itakura [3] employed
two different approaches for their experiments: the former
relied on specific learning of infants (i.e., infants acquired
experience during the familiarization stage), whereas the later
relied on the natural experience of infants (i.e., there was no
familiarization stage). Regarding this point, we adopted the
specific learning approach as an starting point for our current
model and limited the experimental conditions. However, it
is also required that our model learns from more natural
experiences, and therefore further work is required to include
changing conditions which can be considered more natural like
multiplicity of objects, locations of objects, visual appearance,
and other features. Next, it is important to note that the
hypotheses of our work slightly differ from those in [3]. In
their work, the main objective was finding correspondence
between the development of action prediction of others and
the development of infants’ motor abilities (i.e., mirror neuron
system). Therefore, integrating the motor development into the
prediction learning model will be part of our future work.
Finally, our model implements a mechanism to predict the
goal of the action which relies on the visual information (i.e.,
color and motion). However, this information is not sufficient
to account for the general phenomenon of goal detection. For
example, in Cannon and Woodward’s [4] study, where infants
were familiarized with two reaching objects (a hand and a
mechanical claw) and then exposed to the them moving in the
same direction, the infants produced totally different patterns
of prediction for the two object: in the hand condition infants
gazed at the goal object at a different location, whereas infants

in the claw condition gazed at the location of the familiarized
movement. This might indicate that infants make predictions
based on their experience with humans (i.e., experience of
goal-directed actions) that could not be explained only in
terms of visual perception. Then, an additional mechanism
to account for this phenomenon is required. Regarding this
issue, we intend to extend our model to learn from own
experiences acquired during the generation of goal-directed
actions. Specifically, we propose to include tactile information
(e.g., when grasping an object) in order to allow the system to
get feedback from own goal-directed actions. This approach
would be also in line with the findings in [3], which reported
the development of motor abilities to be synchronized with the
development of prediction abilities. Then, the relation between
tactile perception and goal detection can be regarded as natural
consequence of motor development.
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